Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:
A. -x + 3y + 6 = 0 ;
B. 3x - y + 10 = 0 ;
C. 3x - y + 6 = 0 ;
D. 3x + y - 8 = 0.
Đáp án đúng là : D
Ta có: Vectơ chỉ phương của AB là \[{\vec u_{AB}} = \overrightarrow {AB} = \left( { - 2;6} \right) \to {\vec n_{AB}} = \left( {3;1} \right)\] là vectơ pháp tuyến của đường thẳng qua hai điểm A, B.
Mặt khác A (3; -1) \[ \in AB\], suy ra: \[AB:3\left( {x - 3} \right) + 1\left( {y + 1} \right) = 0\] hay \[AB:3x + y - 8 = 0\].
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:
Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).
Góc nào tạo bởi giữa hai đường thẳng: \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}\): x + 10 = 0 .
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Bài tập cuối chương VII