IMG-LOGO

Câu hỏi:

20/07/2024 235

Đội thanh niên xung kích của trường THPT có 12 học sinh gồm 5 học sinh khối 12, 4 học sinh khối 11 và 3 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh để làm nhiệm vụ mỗi buổi sáng. Tính xác suất sao cho 4 học sinh được chọn thuộc không quá hai khối.

Hướng dẫn giải

A. \(\frac{5}{{11}}\);

B. \(\frac{6}{{11}}\);

C. \(\frac{{21}}{{22}}\);

D. \(\frac{{15}}{{22}}\).

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Số phần tử không gian mẫu là: n(Ω) = \(C_{12}^4\)= 495.

Gọi A là biến cố: “4 học sinh được chọn không quá 2 khối”

Biến cố đối của biến cố A là: \(\overline A \) “4 học sinh được chọn thuộc cả 3 khối” ta có các trường hợp

Trường hợp 1, chọn 2 học sinh khối 12, 1 học sinh khối 11 và 1 học sinh khối 10 có \(C_5^2.C_4^1.C_3^1\) cách chọn.

Trường hợp 2, chọn 1 học sinh khối 12, 2 học sinh khối 11 và 1 học sinh khối 10 có \(C_5^1.C_4^2.C_3^1\) cách chọn.

Trường hợp 3, chọn 1 học sinh khối 12, 1 học sinh khối 11 và 2 học sinh khối 10 có \(C_5^1.C_4^1.C_3^2\) cách chọn.

Số phần tử của biến cố \(\overline A \) là: n(\(\overline A \)) = \(C_5^2.C_4^1.C_3^1\) + \(C_5^1.C_4^2.C_3^1\) + \(C_5^1.C_4^1.C_3^2\) = 270.

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{270}}{{495}} = \frac{6}{{11}}\)

Xác suất của biến cố A là: P(A) = 1 – P(\(\overline A \)) = \(1 - \frac{6}{{11}} = \frac{5}{{11}}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong giải bóng đá nữ ở trường THPT có 12 đội tham gia, trong đó có hai đội của hai lớp 12A2 và 11A6. Ban tổ chức tiến hành bốc thăm ngẫu nhiên để chia thành hai bảng đấu A, B mỗi bảng 6 đội. Xác suất để 2 đội của hai lớp 12A2 và 11A6 ở cùng một bảng là:

Xem đáp án » 08/09/2022 501

Câu 2:

Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Số phần tử của không gian mẫu là:

Xem đáp án » 08/09/2022 464

Câu 3:

Trong một hộp có 10 viên bi đánh số từ 1 đến 10, lấy ngẫu nhiên ra hai bi. Tính xác suất để hai bi lấy ra có tích hai số trên chúng là một số lẻ.

Xem đáp án » 08/09/2022 267

Câu 4:

Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được một lá rô hay một lá hình người là:

Xem đáp án » 08/09/2022 265

Câu 5:

Cho E\(\overline E \) là hai biến cố đối nhau. Chọn câu đúng.

Xem đáp án » 08/09/2022 255

Câu 6:

Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá át hay lá rô là

Xem đáp án » 08/09/2022 243

Câu 7:

Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:

Xem đáp án » 08/09/2022 203

Câu 8:

Cho phép thử có không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Các cặp biến cố không đối nhau là

Xem đáp án » 08/09/2022 182

Câu 9:

Kết quả (b; c) của việc gieo một con súc sắc cân đối hai lần liên tiếp, trong đó b là số chấm xuất hiện của lần gieo thứ nhất, c là số chấm xuất hiện lần gieo thứ hai được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình bậc hai đó vô nghiệm

Xem đáp án » 08/09/2022 165

Câu 10:

Gieo 3 đồng tiền xu là một phép thử ngẫu nhiên có không gian mẫu là:

Xem đáp án » 08/09/2022 159

Câu 11:

Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba:

Xem đáp án » 08/09/2022 150

Câu 12:

Gieo con súc sắc hai lần. Gọi A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm xuất hiện. Số phần tử của biến cố A là:

Xem đáp án » 08/09/2022 148

Câu 13:

Trong một lớp học gồm có 18 học sinh nam và 17 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được gọi có cả nam và nữ bằng:

Xem đáp án » 08/09/2022 135

Câu 14:

Cho X = {0; 1; 2; … ; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Tính xác suất để trong ba số được chọn không có hai số liên tiếp.

Hướng dẫn giải

Xem đáp án » 08/09/2022 135

LÝ THUYẾT

Bài tập cuối chương IX

Câu hỏi mới nhất

Xem thêm »
Xem thêm »