Cho parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng x = \(\frac{1}{3}\) và đi qua điểm A(1; 3). Tổng giá trị a + 2b là
Hướng dẫn giải:
Đáp án đúng là: A.
Vì parabol y = ax2 + bx + 4 có trục đối xứng là đường thẳng x = \(\frac{1}{3}\) nên \( - \frac{b}{{2a}} = \frac{1}{3}\)
⇔ 2a = – 3b ⇔ 2a + 3b = 0 (1).
Parabol đi qua điểm A(1; 3) nên a + b + 4 = 3 ⇔ a + b = – 1 ⇔ a = – 1 – b (2).
Thay (2) vào (1) ta được: 2(– 1 – b) + 3b = 0 ⇔ b = 2.
Do đó, a = – 1 – 2 = – 3.
Vậy a + 2b = – 3 + 2 . 2 = 1.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho parabol (P): y = ax2 + bx + c có trục đối xứng là đường thẳng x = 1.
Khi đó 4a + 2b bằng:
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng:
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Xác định các hệ số a, b, c biết parabol có đồ thị hàm số y = ax2 + bx + c đi qua các điểm A(0; – 1), B(1; – 1), C(– 1; 1).
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho đồ thị hàm số y = ax2 + bx + c trong hình vẽ sau:
Khẳng định nào sau đây là đúng ?
Cho parabol (P): y = ax2 + bx + 2. Xác định hệ số a, b biết (P) có đỉnh I(2; – 2).