Tính khoảng cách giữa hai điểm ở hai đầu của một ao cá nhà bác An. Biết khoảng cách từ chỗ bác An đứng đến hai đầu ao lần lượt là 700 m và 900 m và bác An quan sát nhìn hai điểm này dưới một góc 60° như hình vẽ.
Hướng dẫn giải:
Theo định lí côsin ta có:
\(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cosA\)
\( = {700^2} + {900^2} - 2.700.900.cos60^\circ \)= 670 000.
Suy ra: BC = \(\sqrt {670000} \approx 818,5\)(m).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.
Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc \(\widehat {COD} = 60^\circ \).
Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?
Từ hai điểm A và B của một tòa nhà, người ta quan sát điểm pháo hoa nổ. Biết rằng AB = 120 m, phương nhìn AC tạo với phương ngang một góc 45°, phương nhìn BC tạo với phương ngang góc 15°30'.
Hỏi điểm pháo hoa nổ cao so với mặt đất gần với giá trị nào sau đây?
Hai chiếc tàu thủy M và N cách nhau 500 m. Từ M và N thẳng hàng với chân A của tháp hải đăng AB ở trên bờ biển, người ta thấy chiều cao AB của tháp dưới một góc \(\widehat {AMB} = 30^\circ \); \(\widehat {ANB} = 45^\circ \).
Tính chiều cao AB của tháp.
Từ vị trí A, người ta quan sát một cây thông. Biết AH = 5 m, HB = 15 m, \(\widehat {BAC} = 45^\circ \).
Chiều cao của cây bằng:
Từ vị trí điểm C người ta quan sát một cây cao (như hình vẽ).
Biết BC = 5 m, \(\widehat {ACB} = 45^\circ ,\widehat {CBA} = 50^\circ \). Chiều cao của cây bằng bao nhiêu?
Để đo chiều cao của tháp có đỉnh A, chân tháp là B, người ta đứng dưới mặt đất quan sát ở hai điểm C và D sao cho B, C, D thẳng hàng (như hình vẽ).
Qua đo đạc, ta thu được DC = 20 m, α = 58°; β = 47°. Chiều cao của tháp gần nhất với kết quả nào dưới đây?
Người ta muốn xây dựng một tuyến đường hầm qua một ngọn núi để các em vùng cao đi học được dễ hơn (như hình dưới).
Độ dài đường hầm AB gần với kết quả nào dưới đây nhất?
Khoảng cách từ A đến B không thể đo trực tiếp vì phải qua một đầm lầy nên người ta làm như sau: Xác định một điểm C sao cho ta đo được AC = 15 m, BC = 21 m và \[\widehat {ACB} = 80^\circ \]. Khoảng cách AB gần nhất với kết quả nào dưới đây?
Một người đi tàu điện từ trạm A đến trạm B. Khi đứng ở trạm A, người đó nhìn thấy một tháp C. Hướng nhìn từ người đó đến tháp tạo với hướng đi của tàu một góc 60°. Khi xe dừng ở trạm B, người đó vẫn thấy được tháp C, hướng nhìn từ người đó đến tháp ngược với hướng đi của tàu một góc 45°. Biết rằng đoạn đường tàu đi từ trạm A đến trạm B dài 10 km.
Khoảng cách từ trạm A đến tháp C là:
Hình dưới đây vẽ một trường học nọ nằm ở vị trí A là góc tạo bởi hai con đường.
Nhà bạn An ở vị trí B cách trường 5 km, nhà bạn Hòa ở vị trí C cách trường 4 km . Biết \(\widehat {BAC} = 120^\circ \). Hỏi khoảng cách từ nhà bạn An đến nhà bạn Hòa (theo đường chim bay) gần với đáp án nào nhất?