Thứ năm, 23/01/2025
IMG-LOGO

Câu hỏi:

21/07/2024 451

Cho X={0,1,2,3,4,5,6,7}. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một từ X sao cho một trong 3 chữ số đầu tiên phải có mặt chữ số 1.

A. 2280 số

Đáp án chính xác

B. 840 số

C. 1440 số

D. 2520 số

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án:

Gọi số tự nhiên cần tìm là abcde¯ (a≠0)

TH1: Nếu a=1 khi đó:

            Có 1 cách chọn a.

            Có 7 cách chọn b.

            Có 6 cách chọn c.

            Có 5 cách chọn d.

            Có 4 cách chọn e.

Áp dụng quy tắc nhân ta có: 1.7.6.5.4=840 số.

TH2: Nếu a≠1 khi đó:

            Có 6 cách chọn a.

            Có 2 cách xếp vị trí cho chữ số 1 là b hoặc c.

            Cách xếp các chữ số còn lại có 6.5.4 = 120 cách.

Áp dụng quy tắc nhân ta có: 6.2.120 = 1440 số.

Vậy theo quy tắc cộng ta có: 840 + 1440 = 2280 số.

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong kì thi tuyển nhân viên chuyên môn cho công ty cổ phần Giáo dục trực tuyến VEDU, ở khối A có 51 thí sinh đạt điểm giỏi môn Toán, 73 thí sinh đạt điểm giỏi môn Vật lí, 73 thí sinh đạt điểm giỏi môn Hóa học, 32 thí sinh đạt điểm giỏi cả hai môn Toán và Vật lí, 45 thí sinh đạt điểm giỏi cả hai môn Vật lí và Hóa học, 21 thí sinh đạt điểm giỏi cả hai môn Toán và Hóa học, 10 thí sinh đạt điểm giỏi cả ba môn Toán, Vật lí và Hóa học. Có 767 thí sinh mà cả ba môn đều không có điểm giỏi. Hỏi có bao nhiêu thí sinh tham dự tuyển nhân viên chuyên môn cho công ty?

Xem đáp án » 30/07/2021 3,639

Câu 2:

Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên,mỗi số có 6 chữ số đồng thời thỏa điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 số sau một đơn vị.

Xem đáp án » 30/07/2021 3,157

Câu 3:

Một lớp có 25 học sinh khá môn Toán, 24 học sinh khá môn Ngữ Văn, 10 học sinh khá cả môn Toán và môn Ngữ Văn và 3 học sinh không khá cả Toán và Ngữ Văn. Hỏi lớp học đó có bao nhiêu học sinh?

Xem đáp án » 30/07/2021 2,494

Câu 4:

Sắp xếp 5 học sinh lớp A và 5 học sinh lớp B vào hai dãy ghế đối diện nhau, mỗi dãy 5 ghế sao cho 2 học sinh ngồi đối diện nhau thì khác lớp. Khi đó số cách xếp là:

Xem đáp án » 30/07/2021 2,407

Câu 5:

Một đoàn tàu có bốn toa đỗ ở sân ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

Xem đáp án » 30/07/2021 1,332

Câu 6:

Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số  có 2011 chữ số và trong đó có ít nhất hai chữ số 9.

Xem đáp án » 30/07/2021 1,233

Câu 7:

Có 20 cặp vợ chồng tham dự chương trình Gameshow truyền hình thực tế. Có bao nhiêu cách chọn ra hai cặp đôi sao cho hai cặp đó là hai đôi vợ chồng?

Xem đáp án » 30/07/2021 1,166

Câu 8:

Có bao nhiêu cách sắp xếp 8 viên bi đỏ khác nhau và 8 viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu thì không được ở cạnh nhau?

Xem đáp án » 30/07/2021 753

Câu 9:

Một bộ ghép hình gồm các miếng gỗ. Mỗi miếng gỗ được đặc trưng bởi 4 tiêu chuẩn: chất liệu, màu sắc, hình dạng và kích cỡ. Biết rằng có 2 chất liệu (gỗ, nhựa); có 4 màu (xanh, đỏ, lam, vàng); có 4 hình dạng (hình tròn, vuông, tam giác, lục giác) và có 3  kích cỡ (nhỏ, vừa, lớn). Xét miếng gỗ “nhựa, đỏ, hình tròn, vừa”. Hỏi có bao nhiêu miếng gỗ khác miếng gỗ trên ở đúng hai tiêu chuẩn?

Xem đáp án » 30/07/2021 689

LÝ THUYẾT

I. Quy tắc cộng

- Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m + n cách thực hiện.

- Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau, được phát biểu như sau:

Nếu A và B là các tập hợp hữu hạn và không giao nhau thì:

n  (AB)  =n(A)  +n(B)

- Chú ý: Quy tắc cộng có thể mở rộng cho nhiều hành động.

- Ví dụ 1. Một lớp học có 21 bạn nữ và 19 bạn nam. Giáo viên chủ nhiệm cần chọn một bạn để làm lớp trưởng. Hỏi giáo viên có bao nhiêu cách chọn?

Lời giải:

+ Trường hợp 1. Giáo viên chọn 1 bạn nam: có 19 cách.

+ Trường hợp 2. Giáo viên chọn 1 bạn  nữ: có 21 cách

Theo quy tắc cộng, giáo viên sẽ có: 19 + 21 = 40 cách chọn 1 bạn làm lớp trưởng.

- Ví dụ 2. Bạn Lan có 10 quyển sách khác nhau; 12 chiếc bút khác nhau và 5 cục tẩy khác nhau. Bạn Lan cần chọn một món đồ để đem tặng Hoa. Hỏi bạn Lan có bao nhiêu cách chọn?

Lời giải:

Bạn Lan có thể chọn:

+ Một quyển sách: có 10 cách chọn

+ Một chiếc bút: có 12 cách chọn.

+ Một cục tẩy: có 5 cách chọn.

Theo quy tắc cộng, bạn Lan có: 10 + 12 + 5 =  27 cách chọn.

II. Quy tắc nhân

- Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.

- Chú ý: Quy tắc nhân có thể mở rộng cho nhiều hành động liên liếp.

- Ví dụ 3. Cho tập A = {1; 3; 4; 5; 6}. Hỏi lập được bao nhiêu số tự nhiên có 2 chữ số đôi một khác nhau từ tập A?

Lời giải:

Để tạo ra một số tự nhiên có 2 chữ số đôi một khác nhau từ tập A, ta phải thực hiện liên tiếp hai hành động:

- Hành động 1: Chọn chữ số hàng chục có 5 cách.

- Hành động 2. Chọn chữ số hàng đơn vị. Ứng với mỗi cách chọn chữ số hàng chục, ta có 4 cách chọn chữ số hàng đơn vị (vì chữ số hàng chục khác chữ số hàng đơn vị).

Theo quy tắc nhân, số các số tự nhiên thỏa mãn đầu bài là: 5.4 = 20 số.

- Ví dụ 4. Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 10 món, 1 loại quả tráng miệng trong 6 loại quả tráng miệng và 1 nước uống giải khát trong 4 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?

Lời giải:

Để chọn một thực đơn, ta cần thực hiện liên tiếp ba hành động:

- Chọn 1 món ăn trong 10 món có 10 cách.

- Chọn 1 loại quả tráng miệng trong 6 loại quả tráng miệng có 6 cách.

- Chọn 1 nước uống trong 4 loại nước uống có 4 cách.

Theo quy tắc nhân, số cách cách chọn thực đơn là 10.6.4 = 240 cách.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »