Cho biết A = B. Khẳng định nào sau đây sai?
A. A = {1; 3} và B = {x ∈ ℝ | (x – 1)(x – 3) = 0};
Hướng dẫn giải
Đáp án đúng là: C
⦁ Ta có (x – 1)(x – 3) = 0
Suy ra x = 1 hoặc x = 3.
Vì x = 1 ∈ ℝ và x = 3 ∈ ℝ.
Nên B = {1; 3}.
Mà A = {1; 3}.
Do đó A = B.
Vậy phương án A đúng.
⦁ Vì k ∈ ℤ và 0 ≤ k ≤ 4 nên ta có k ∈ {0; 1; 2; 3; 4}.
Với k = 0, ta có n = 2k + 1 = 2.0 + 1 = 1 ∈ ℕ.
Với k = 1, ta có n = 2k + 1 = 2.1 + 1 = 3 ∈ ℕ.
Với k = 2, ta có n = 2k + 1 = 2.2 + 1 = 5 ∈ ℕ.
Với k = 3, ta có n = 2k + 1 = 2.3 + 1 = 7 ∈ ℕ.
Với k = 4, ta có n = 2k + 1 = 2.4 + 1 = 9 ∈ ℕ.
Suy ra B = {1; 3; 5; 7; 9}.
Mà A = {1; 3; 5; 7; 9}.
Do đó A = B.
Vậy đáp án B đúng.
⦁ Ta có x2 – 2x – 3 = 0.
Suy ra x = 3 ∈ ℝ hoặc x = – 1 ∈ ℝ.
Do đó B = {–1; 3}.
Mà A = {–1; 2} nên A ≠ B.
Vậy phương án C sai.
⦁ Ta có x2 + x + 1 = 0 (vô nghiệm).
Do đó B = ∅.
Mà A = ∅.
Suy ra A = B.
Do đó phương án D đúng.
Vậy ta chọn phương án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho các mệnh đề sau:
(1) “Nếu \(\sqrt 5 \)là số vô tỉ thì 5 là số hữu tỉ”.
(2) “Nếu tam giác ABC cân thì tam giác ABC đều”.
(3) “Nếu tứ giác ABCD là hình vuông thì tứ giác ABCD là hình chữ nhật”.
(4) “Nếu |x| > 1 thì x > 1”.
Số mệnh đề có mệnh đề đảo là mệnh đề đúng là:
Cho hai tập khác rỗng E = (m – 1; 4] và F = (– 2; 2m + 2] với m ∈ ℝ. Xác định m để F ⊂ E.
Cho tập hợp \({C_\mathbb{R}}A = \left[ {0;6} \right)\), \({C_\mathbb{R}}B = \left( { - \frac{{12}}{3};5} \right) \cup \left( {\sqrt {17} ;\sqrt {55} } \right).\) Tập \({C_\mathbb{R}}\left( {A \cap B} \right)\)là:
Cho ba tập hợp A = [– 2; 2], B = [1; 5], C = [0; 1]. Khi đó tập (A \ B) ∩ C là: