Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Hướng dẫn giải
Đáp án đúng là: D
Theo hệ quả của định lí côsin, ta có:
⦁ \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{2^2} + {{\left( {1 + \sqrt 3 } \right)}^2} - {{\left( {\sqrt 6 } \right)}^2}}}{{2.2.\left( {1 + \sqrt 3 } \right)}} = \frac{1}{2}\).
Suy ra \(\widehat A = 60^\circ \).
⦁ \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {{\left( {1 + \sqrt 3 } \right)}^2} - {2^2}}}{{2.\sqrt 6 .\left( {1 + \sqrt 3 } \right)}} = \frac{{\sqrt 2 }}{2}\).
Suy ra \(\widehat B = 45^\circ \).
⦁ \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {2^2} - {{\left( {1 + \sqrt 3 } \right)}^2}}}{{2.\sqrt 6 .2}} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Suy ra \(\widehat C = 75^\circ \).
Vậy ta chọn phương án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?