Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 |
5 |
7 |
6 |
2 |
5 |
9 |
7 |
6 |
9 |
20 |
6 |
10 |
7 |
5 |
8 |
9 |
7 |
8 |
5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
A. 0; 2 và 20;
C. 20
D. 0
Hướng dẫn giải
Đáp án đúng là: C
Ta có bảng tần số sau:
Số cuộn phim |
0 |
2 |
5 |
6 |
7 |
8 |
9 |
10 |
20 |
|
Số nhiếp ảnh gia |
1 |
1 |
4 |
3 |
4 |
2 |
3 |
1 |
1 |
n = 20 |
- Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
Do đó Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
Do đó Q1 = 5.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
Do đó Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Số học sinh giỏi của 30 lớp ở một trường Trung học phổ thông được ghi lại trong bảng sau:
0 |
2 |
1 |
0 |
0 |
3 |
0 |
0 |
1 |
1 |
0 |
1 |
6 |
6 |
0 |
1 |
5 |
2 |
4 |
5 |
1 |
0 |
1 |
2 |
4 |
0 |
3 |
3 |
1 |
0 |
Tìm khoảng tứ phân vị ∆Q của mẫu số liệu trên.
Hai lớp 10A và 10B của một trường Trung học phổ thông cùng làm bài thi môn Toán, chung một đề thi. Kết quả thi được trình bày ở hai bảng tần số sau đây:
Lớp 10A:
Điểm |
3 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
7 |
9 |
3 |
3 |
7 |
12 |
4 |
n = 45 |
Lớp 10B:
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
6 |
6 |
7 |
8 |
9 |
5 |
4 |
n = 45 |
Lớp nào có kết quả thi đồng đều hơn?
Nhiệt độ của 24 tỉnh thành ở Việt Nam (đơn vị: °C) vào một ngày của tháng 7 được cho trong bảng sau đây:
36 |
30 |
31 |
32 |
31 |
40 |
37 |
29 |
41 |
37 |
35 |
34 |
34 |
35 |
32 |
33 |
35 |
33 |
33 |
31 |
34 |
34 |
32 |
35 |
Khoảng biến thiên R của bảng số liệu trên là
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x1 ≤ x2 ≤ x3 ≤ ... ≤ xn. Khi đó khoảng biến thiên R của mẫu số liệu bằng:
Cho dãy số liệu thống kê sau: 1; 2; 3; 4; 5; 6; 7; 8; 9. Phương sai và độ lệch chuẩn của mẫu số liệu trên lần lượt là:
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 |
17 |
22 |
18 |
20 |
17 |
15 |
13 |
15 |
20 |
15 |
12 |
18 |
17 |
25 |
17 |
21 |
15 |
12 |
18 |
16 |
23 |
14 |
18 |
19 |
13 |
16 |
19 |
18 |
17 |
Khoảng biến thiên R của mẫu số liệu trên là:
Điểm trung bình một số môn học của hai bạn An và Bình trong năm học vừa qua được cho trong bảng sau:
Môn |
Điểm của An |
Điểm của Bình |
Toán Vật Lý Hóa học Sinh học Ngữ Văn Lịch sử Địa lý Giáo dục thể chất |
8,0 7,5 7,8 8,3 7,0 8,0 8,2 9,0 |
8,5 9,5 9,5 8,5 5,0 5,5 6,0 9,0 |
Hỏi ai “học lệch” hơn?
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách |
1 |
2 |
3 |
4 |
5 |
6 |
|
Số học sinh đọc |
10 |
m |
8 |
6 |
n |
3 |
n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số điện năng tiêu thụ của 10 hộ ở một khu dân cư trong một tháng như sau:
165 |
85 |
65 |
65 |
70 |
50 |
45 |
100 |
45 |
100 |
Khoảng tứ phân vị của mẫu số liệu trên bằng: