IMG-LOGO

Câu hỏi:

20/07/2024 243

Có bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau trong đó chứa các chữ số 3, 4, 5 và chữ số 4 đứng cạnh chữ số 3 và chữ số 5?


A. 1470;


Đáp án chính xác


B. 750;



C. 2940;



D. 1500.


 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Giả sử mỗi số thỏa mãn yêu cầu bài toán có dạng \(\overline {abcdef} \).

Ta thấy các chữ số 3, 4, 5 luôn đứng cạnh nhau và chữ số 4 đứng giữa hai chữ số còn lại.

Trường hợp 1: b = 4 vậy a và c phải bằng 3 hoặc 5

Chọn d có 7 cách chọn(vì d có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5)

Chọn e có 6 cách chọn(vì e có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số d đã chọn)

Chọn f có 5 cách chọn(vì f có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số d, e đã chọn)

Vậy có 2.7.6.5 = 420 số

Trường hợp 2: c bằng 4 vậy b và d phải bằng 3 hoặc 5

Chọn a có 6 cách (vì a có thể chọn một trong các số từ 1 đến 9 bỏ đi số 3, 4, 5)

Chọn e có 6 cách (vì e có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a đã chọn)

Chọn f có 5 cách (vì f có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a, e đã chọn)

Vậy có 6.2.6.5 = 360 số

Trường hợp 3: d bằng 4 vậy c và e phải bằng 3 hoặc 5

Chọn a có 6 cách (vì a có thể chọn một trong các số từ 1 đến 9 bỏ đi số 3, 4, 5)

Chọn b có 6 cách (vì b có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a đã chọn)

Chọn f có 5 cách (vì f có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a, e đã chọn)

Vậy có 6.2.6.5 = 360 số

Trường hợp 4: e bằng 4 vậy d và f phải bằng 3 hoặc 5

Chọn a có 6 cách (vì a có thể chọn một trong các số từ 1 đến 9 bỏ đi số 3, 4, 5)

Chọn b có 6 cách (vì b có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a đã chọn)

Chọn c có 5 cách (vì c có thể chọn một trong các số từ 0 đến 9 bỏ đi số 3, 4, 5 và số a, b đã chọn)

Vậy có 6.2.6.5 = 360 số

Áp dụng quy tắc cộng ta có: 420 + 360 + 360 + 360 = 1500 số

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lớp 10A có 15 học sinh nam và 25 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra một học sinh nam và một học sinh nữ để thi đấu cầu lông đôi nam nữ.

Xem đáp án » 16/09/2022 497

Câu 2:

10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng số điểm của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?

Xem đáp án » 16/09/2022 379

Câu 3:

Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

Xem đáp án » 16/09/2022 285

Câu 4:

Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.

Xem đáp án » 16/09/2022 261

Câu 5:

Cho các số 1; 2; 3; 4; 5 có thể lập được bao nhiêu số tự nhiên lẻ gồm 3 chữ số đôi một khác nhau và chia hết cho 3.

Xem đáp án » 16/09/2022 227

Câu 6:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau?

Xem đáp án » 16/09/2022 224

Câu 7:

Một lớp học có 30 bạn học sinh trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cử 4 bạn học sinh đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất 1 cán sự lớp.

Xem đáp án » 16/09/2022 219

Câu 8:

Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.

Xem đáp án » 16/09/2022 209

Câu 9:

Biết hệ số của x3 trong khai triển của (1 – 3x)n – 270. Giá trị của n là

Xem đáp án » 16/09/2022 196

Câu 10:

Trong một hộp có 7 viên bi đỏ, 5 viên bi trắng và 6 viên bi xanh. Chọn ngẫu nhiên ra 4 viên bi. Có bao nhiêu cách để chọn được 2 viên bi xanh.

Xem đáp án » 16/09/2022 189

Câu 11:

Cho các số 0; 1; 2; 3; 4; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau

Xem đáp án » 16/09/2022 160

Câu 12:

Cho số tự nhiên n thỏa mãn \(3C_{n + 1}^3 - 3A_n^2 = 42\left( {n - 1} \right)\). Giá trị của biểu thức \(3C_n^4 - A_n^2\)

Xem đáp án » 16/09/2022 158

Câu 13:

Tính giá trị \[M = A_{n - 15}^2 + 3A_{n - 14}^3\], biết rằng \[C_n^4 = 20C_n^2\]

Xem đáp án » 16/09/2022 155

Câu 14:

Tính giá trị của biểu thức P = \(3C_n^3 + 2A_n^4 - 2n\). Biết giá trị của n thoả mãn \[A_n^2 - C_{n + 1}^{n - 1} = 4n + 6\] (n \( \in \)ℕ, n ≥ 2).

Xem đáp án » 16/09/2022 153

Câu 15:

Trong khai triển (x – 2y)4 số hạng chứa x2y2 là:

Xem đáp án » 16/09/2022 141

LÝ THUYẾT

Bài tập cuối chương VIII

Câu hỏi mới nhất

Xem thêm »
Xem thêm »