Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ vua. Người dành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván (không có ván nào hòa). Xác suất để người chơi thứ nhất dành chiến thắng là:
A. 7/8
B. 4/5
C. 3/4
D. 1/2
Để cuộc thi kết thúc thì cần tối đa thêm 3 ván đấu nữa diễn ra (để nếu người chơi thứ hai thắng liên tiếp 3 ván nữa thì mới dành chiến thắng).
Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván tức là 2 người đã chơi được 6 ván.
Khi đó xảy ra các trường hợp sau:
• Ván thứ bảy: người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván, người thứ hai mới thắng 2 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy: người thứ nhất thua, tiếp tục ván thứ tám thì người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván , người thứ hai mới thắng 3 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy và ván thứ tám người thứ nhất thua, ván thứ chín người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván, người thứ hai mới thắng 4 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy, ván thứ tám và ván thứ chín người thứ nhất đều thua. Khi đó người thứ nhất thắng 4 ván, người thứ hai đã thắng 5 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ hai dành chiến thắng.
Trong 4 trường hợp trên chỉ có 3 trường hợp đầu là người thứ nhất dành chiến thắng. Vậy xác suất cần tìm là 3/4
Ta chọn phương án C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Điền tiếp vào chỗ trống: “Giả sử một phép thử có không gian mẫu gồm …. các kết quả có cùng khả năng xảy ra và A là một biến cố. Xác suất của biến cố A là một số, kí hiệu là P(A), được xác định bởi công thức:
P(A) =
trong đó n(A) và n( ) lần lượt là kí hiệu số phần tử của tập A và ”.
Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt sấp” là:
Một dãy phố có 5 cửa hàng bán quần áo. Có 5 người khách đến mua quần áo, mỗi người khách vào ngẫu nhiên một trong năm cửa hàng đó. Xác suất để có một cửa hàng có 3 người khách là:
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
Từ các chữ số {1; 2; 3; 4; 5; 6}, lập một số bất kì gồm 3 chữ số. Xác suất để số nhận được chia hết cho 6 là:
Một hộp đựng 9 viên bi có kích thước và khối lượng như nhau, trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Xác suất để 3 viên bi lấy ra có ít nhất 2 viên bi màu xanh là:
Lớp 11B có 20 học sinh gồm 12 nữ và 8 nam. Cần chọn ra 2 học sinh của lớp đi lao động. Xác suất để chọn được 2 học sinh trong đó có cả nam và nữ là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng 5/18 , hỏi tổ có bao nhiêu học sinh nữ?
Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Lan, Mai, Minh, Thu, Miên, An, Hà, Thanh, Mơ, Nga. Tính xác xuất để ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M.
Gieo hai đồng tiền một lần. Kí hiệu S, N lầm lượt để chỉ đồng tiền lật sấp, lật ngửa. Xác định biến cố M: “Hai đồng tiền xuất hiện hai mặt không giống nhau”.
Cho tập hợp A gồm các số nguyên dương nhỏ hơn hoặc bằng 40. Chọn 2 phần tử trong tập hợp A. Gọi B là biến cố “Phần tử được chọn chia hết cho 5”. Số kết quả thuận lợi cho biến cố B là:
Một hộp chứa 18 quả cầu gồm 8 quả cầu màu xanh và 10 quả cầu màu trắng. Chọn ngẫu nhiên 2 quả từ hộp đó. Xác xuất để chọn được 2 quả cầu cùng màu là:
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.