Trong không gian Oxyz, cho điểm A(1; 2; -2). Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
A. 2y + z = 0;
B. 2y - z = 0;
C. y + z = 0;
Đáp án đúng là: D
Gọi H , K lần lượt là hình chiếu của A lên mặt phẳng (P) và trục Ox .
Ta có: d (A; (P)) = AH £ AK.
Suy ra khoảng cách từ A đến (P) lớn nhất khi H º K, hay mặt phẳng (P) nhận véc-tơ làm véc-tơ pháp tuyến.
K là hình chiếu của A trên trục Ox suy ra: K(1; 0; 0), .
Mặt phẳng (P) đi qua K có phương trình:
-2(y - 0) + 2(z + 0) = 0 Û y - z = 0.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng ba số nguyên b thỏa mãn (3b - 3)(a.2b - 18) < 0?
Cho hàm số f (x) = (m - 1)x4 - 2mx2 + 1 với m là tham số thực. Nếu thì bằng
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = |x4 - 2mx2 + 64x| có đúng ba điểm cực trị
Trong không gian Oxyz, cho mặt cầu (S) tâm I(1; 3; 9) bán kính bằng 3. Gọi M , N là hai điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thẳng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kính bằng . Gọi A là tiếp điểm của MN và (S), giá trị AM.AN bằng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Xét tất cả các số thực x, y sao cho với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + x - 3y bằng
Biết F (x) và G (x) là hai nguyên hàm của hàm số f (x) trên ℝ và Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F (x), y = G (x), x = 0 và x = 3. Khi S = 15 thì a bằng:
Trong không gian Oxyz, cho mặt cầu (S): x2 + (y - 2)2 + (z + 1)2 = 6. Đường kính của (S) bằng:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = 2a và AA' = 3a (tham khảo hình bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng
Cho khối lăng trụ có diện tích đáy là 3a2 và chiều cao 2a. Thể tích khối lăng trụ đã cho bằng