Xét tất cả số thực x, y sao cho với mọi số thực dương a. Giá trị nhỏ nhất của biểu thức P = x2 + y2 − 4x + 8y bằng
A. −15.
B. 25.
C. −5.
Đáp án đúng là: A
Giả sử x, y thỏa với mọi số dương a
Ta có P = x2 + y2 − 4x + 8y x2 + y2 − 4x + 8y − P = 0
Suy ra điểm M(x; y) thuộc đường tròn tâm I(2; −4) và bán kính =
(5 − y2).3 ≥ (6x − 3t)t
−3t2 + 6xt − 15 + 3y2 ≤ 0 (với t = log3a)
Theo đề bài ta có đúng với mọi số thực dương a nên −3t2 + 6xt − 15 + 3y2 ≤ 0 đúng với mọi t Î ℝ
Do đó
9x2 +9y2 − 45 ≤ 0 x2 + y2 ≤ 5
Suy ra tập hợp các điểm M(x; y) là hình tròn tâm O(0; 0) và bán kinh R2 =
Vậy để tồn tại cặp (x; y) thì đường tròn (I; R1) và hình tròn (O; ) phải có điểm chung
Do đó IO ≤ R1 + ≤
≤ P ≥ −15
Vậy giá trị nhỏ nhất của P là −15.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 3. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của S bằng
Cho hàm số f(x) = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên thuộc đoạn [−2; 5] của tham số m để phương trình f(x) = m có đúng 2 nghiệm thực phân biệt?
Cho hình lập phương ABCD.A B C D có cạnh bằng 3 ( tham khảo hình bên). Khoảng cách từ B đến mặt phẳng (ACC A) bằng
Có bao nhiêu giá trị nguyên âm của tham số a để hàm số y = |x4 + ax2 – 8x| có đúng 3 điểm cực trị?
Cho hàm số f(x) = ax4 + 2(a + 4)x2 − 1 với a là tham số thực. Nếu = f(1) thì bằng
Hàm số F(x) = cotx là một nguyên hàm của hàm số nào dưới đây trên khoảng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30; 50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Trong không gian Oxyz. Cho hai vectơ = (1; −4; 0) và = (−1; −2; 1). Vectơ + 3 có tọa độ là
Cho khối nón có diện tích đáy bằng 3a2 và chiều cao 2a. Thể tích của khối nón đã cho bằng ?
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thỏa mãn (4b − 1)(a.3b − 10) < 0 ?
Cho hình lập phương ABCD.A'B'C'D' ( tham khảo hình bên). Giá trị sin của góc giữa đường thẳng AC' và mặt phẳng (ABCD) bằng
Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình dưới. Giá trị cực tiểu của hàm số đã cho bằng
Cho các số phức z1, z2, z3 thỏa mãn 2 = 2 = = 2 và (z1 + z2)z3 = 3z1z2 . Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng