Có bao nhiêu số phức z thỏa mãn = và = ?
A. 2.
B. 3.
C. 1.
Đáp án đúng là: D
= =
. = 0
Trường hợp 1.
= 0 = 2i z = −2i
Trường hợp 2.
= 0 = = 0
Đặt z = x + y.i ta có z − 2 = x − 2 + y.i và z + 2i = x + (y+2).i
Khi đó
= (x − 2)2 + y2 = x2 +(y + 2)2
x2 − 4x + 4 + y2 = x2 + y2 + 4y + 4
−4x = 4y x = −y
Lại có: = x2 + y2 = 2
2y2 = 2 2 . = 0
y = 0 hoặc y = ±1
Do đó ta có các số z Î {0; 1 − i; −1 + i; −2i} thỏa mãn.
Vậy có 4 số phức thỏa mãn yêu cầu bài toán
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 3. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của S bằng
Cho hàm số f(x) = ax4 + bx2 + c có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên thuộc đoạn [−2; 5] của tham số m để phương trình f(x) = m có đúng 2 nghiệm thực phân biệt?
Cho hình lập phương ABCD.A B C D có cạnh bằng 3 ( tham khảo hình bên). Khoảng cách từ B đến mặt phẳng (ACC A) bằng
Có bao nhiêu giá trị nguyên âm của tham số a để hàm số y = |x4 + ax2 – 8x| có đúng 3 điểm cực trị?
Cho hàm số f(x) = ax4 + 2(a + 4)x2 − 1 với a là tham số thực. Nếu = f(1) thì bằng
Hàm số F(x) = cotx là một nguyên hàm của hàm số nào dưới đây trên khoảng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30; 50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Trong không gian Oxyz. Cho hai vectơ = (1; −4; 0) và = (−1; −2; 1). Vectơ + 3 có tọa độ là
Cho khối nón có diện tích đáy bằng 3a2 và chiều cao 2a. Thể tích của khối nón đã cho bằng ?
Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thỏa mãn (4b − 1)(a.3b − 10) < 0 ?
Cho hình lập phương ABCD.A'B'C'D' ( tham khảo hình bên). Giá trị sin của góc giữa đường thẳng AC' và mặt phẳng (ABCD) bằng
Cho hàm số y = ax4 + bx2 + c có đồ thị là đường cong trong hình dưới. Giá trị cực tiểu của hàm số đã cho bằng
Cho các số phức z1, z2, z3 thỏa mãn 2 = 2 = = 2 và (z1 + z2)z3 = 3z1z2 . Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng