Cho biểu thức với .
Phương pháp:
Áp dụng linh hoạt các kĩ năng để rút gọn biểu thức, sau đó tính giá trị biểu thức.
Phần c sử dụng phương pháp ước số
Cách giải:
với .
Tìm giá trị nguyên của x để biểu thức P có giá trị nguyên.
Điều kiện: .
Ta có: hay
Mà . Ta có bảng giá trị:
|
-3 |
-1 |
1 |
3 |
|
-8 |
-6 |
-4 (loại) |
-2 |
Vậy thì P nhận giá trị nguyên.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Gọi G là giao điểm của AE với MN. Chứng minh B, G, F thẳng hàng.
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Gọi D là giao điểm của MN với AC, E là giao điểm của MC với BN, F là giao điểm của ED với AN. Chứng minh .
Cho biểu thức với .
Tính giá trị của biểu thức P, với x thỏa mãn .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Chứng minh .
Cho các số x, y, z dương thỏa mãn .
Tìm giá trị nhỏ nhất của biểu thức .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Chứng minh tứ giác MBCN là hình bình hành.