Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:
Hướng dẫn giải
Đáp án đúng là: A
⦁ Phương trình đường tròn có dạng x2 + y2 – 2ax – 2by + c = 0, với \(\left\{ \begin{array}{l} - 2a = 2\\ - 2b = 4\\c = - 20\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\\c = - 20\end{array} \right.\)
Suy ra (C) có tâm I(–1; –2).
Do đó phương án A sai.
⦁ Ta có \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + 20} = 5\).
Suy ra (C) có đường kính 2R = 10.
Do đó phương án B đúng.
⦁ Thế tọa độ điểm M(2; 2) vào phương trình (C), ta được:
22 + 22 + 2.2 + 4.2 – 20 = 0 (đúng).
Suy ra M(2; 2) ∈ (C).
Do đó phương án C đúng.
⦁ Thế tọa độ điểm A(1; 1) vào phương trình (C), ta được:
12 + 12 + 2.1 + 4.1 – 20 = – 12 ≠ 0.
Suy ra A(1; 1) ∉ (C).
Do đó phương án D đúng.
Vậy ta chọn phương án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:
Góc giữa hai đường thẳng \({\Delta _1}:2x + 2\sqrt 3 y + \sqrt 5 = 0\) và \({\Delta _2}:y - \sqrt 6 = 0\) là:
Cho hai phương trình \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1\) (1) và \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{9} = 1\) (2). Phương trình nào là phương trình chính tắc của elip có 2a = 6, 2c = 4?
Khoảng cách từ điểm M(1; –1) đến đường thẳng ∆: \(\left\{ \begin{array}{l}x = 3 + 4t\\y = - 2 + 3t\end{array} \right.\) là:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì:
Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–1; 3) và C(5; 2). Tọa độ của \(\overrightarrow {BC} \) là:
Bài 7. Bài tập cuối chương VII