Tìm tất cả các giá trị của tham số m để hàm số đạt cực đại tại x = 1.
A.m = -1
B. m = 1
C. m = 4/3
D. Không tồn tại.
Ta có
Hàm số đạt cực trị tại x = 1 thì y'(1) = 0 ⇒
Với m = 1 thì hàm số đã cho trở thành
Ta có , y'' = 6x - 4 Vì y''(1) = 2 > 0 nên hàm số đạt cực tiểu tại x = 1.
Do vậy không có m thỏa mãn. Chọn đáp án D.
Chú ý. Sai lầm có thể gặp phải: khi giải y'(1) = 0 => m = 1 đã vội kết luận mà không kiểm tra lại, dẫn đến chọn đáp án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số Tìm m để hàm số có 3 điểm cực trị là 3 đỉnh của 1 tam giác vuông
Với giá trị nào của m, đồ thị hàm số có hai điểm cực trị đối xứng qua đường thẳng:
Cho hàm số f có đạo hàm là với mọi x ∈ R. Số điểm cực trị của hàm số f là:
Đồ thị hàm số y = |x| có dạng hình vẽ.
Có bao nhiêu mệnh đề đúng trong các phát biểu sau?
1. Hàm số không có đạo hàm tại x = 0.
2. Hàm số không liên tục tại x = 0.
3. Hàm số không có cực trị tại x = 0.
4. Hàm số đạt cực trị tại x = 0.
Cho hàm số y = x3 - 2x2 - 1 (1) và các mệnh đề
(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3
(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3
(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3
(4) Cực trị của hàm số (1) là x = 0 và x = 4/3
Trong các mệnh đề trên, số mệnh đề sai là:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên
Mệnh đề nào sau đây là đúng?
Với giá trị nào của m, hàm số đạt cực tiểu tại điểm có hoành độ x = 0?
Cho hàm số (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:
Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc ?
I. Khái niệm cực đại, cực tiểu.
- Định nghĩa.
Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là ; b là và điểm x0 (a; b).
a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x (x0 – h; x0 + h) và thì ta nói hàm số f(x) đạt cực đại tại x0.
b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và thì ta nói hàm số f(x) đạt cực tiểu tại x0.
- Chú ý:
1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.
Kí hiệu là fCĐ (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.
2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.
3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.
II. Điều kiện đủ để hàm số có cực trị
- Định lí 1
Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K hoặc trên K \ {x0}; với h > 0.
a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).
b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).
Ví dụ 1. Tìm các điểm cực trị của hàm số y = – 2x3 + 3x2.
Lời giải:
Hàm số xác định với mọi x.
Ta có: y’ = – 6x2 + 6x
Và y’ = 0
Bảng biến thiên:
Từ bảng biến thiên, suy ra x = 0 là điểm cực tiểu của hàm số và x = 1 là điểm cực đại của hàm số.
Ví dụ 2. Tìm các điểm cực trị của hàm số .
Lời giải:
Hàm số đã cho xác định với .
Ta có:
Vậy hàm số đã cho không có cực trị (vì theo khẳng định 3 của chú ý trên, nếu hàm số đạt cực trị tại x0 thì y’(x0) = 0).
III. Quy tắc tìm cực trị .
- Quy tắc 1.
1. Tìm tập xác định.
2. Tính f’(x). Tìm các điểm tại đó f’(x) bằng 0 hoặc f’(x) không xác định.
3. Lập bảng biến thiên.
4. Từ bảng biến thiên suy ra các điểm cực trị.
- Định lí 2.
Giả sử hàm số y = f(x) có đạo hàm cấp hai trong khoảng (x0 – h; x0 + h) với h > 0. Khi đó:
a) Nếu f’(x0) = 0; f”(x0) > 0 thì x0 là điểm cực tiểu;
b) Nếu f’(x0) = 0; f”(x0) < 0 thì x0 là điểm cực đại.
- Quy tắc II.
1. Tìm tập xác định
2. Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu xi ( i = 1; 2; ….; n) là các nghiệm của nó.
3. Tính f”(x) và f”(xi).
4. Dựa vào dấu của f”(xi) suy ra tính chất cực trị của điểm xi.
- Ví dụ 4. Tìm cực trị của hàm số .
Lời giải:
Hàm số đã cho xác định với mọi x
Ta có: f’(x) = 4x3 – 4x
Ta có: f”(x) = 12x2 – 4
Suy ra: f”(0) = – 4 < 0 nên x = 0 là điểm cực đại.
f”(1) = f”(– 1) = 8 > 0 nên x = 1 và x = –1 là điểm cực tiểu.
Kết luận:
Hàm số f(x) đạt cực tiểu tại x = 1 và x = – 1; fCT = f(1) = f(–1) = 9.
Hàm số f(x) đạt cực đại tại x = 0 và fCD = f(0) = 10.