Nếu hàm số bậc ba có phương trình có nghiệm kép hoặc vô nghiệm thì hàm số bậc ba đó:
A. Không có cực trị
B. Có 1 cực trị
C. Có 2 cực trị
D. Cả A và B đúng
Đáp án A
Nếu hàm số bậc ba có phương trình có nghiệm kép hoặc vô nghiệm thì hàm số bậc ba đó không có cực trị
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = f(x) xác định và có đạo hàm cấp một và cấp hai trên khoảng (a;b) và . Khẳng định nào sau đây là sai?
Cho hàm số y = f(x) có đạo hàm trên (a;b). Nếu f'(x) đổi dấu từ dương sang âm qua điểm thì:
Cho các phát biểu sau:
1. Hàm số đạt cực đại tại khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua
2. Hàm số đạt cực trị tại khi và chỉ khi là nghiệm của đạo hàm.
3. Nếu và thì không phải là cực trị của hàm số đã cho
4. Nếu và thì hàm số đạt cực đại tại
Các phát biểu đúng là:
Cho hàm số có đạo hàm trên (a;b). Nếu đổi dấu từ âm sang dương qua điểm thuộc (a;b) thì:
Cho hàm số y = f(x) có bảng biến thiên trên khoảng (0; 2) như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
I. Khái niệm cực đại, cực tiểu.
- Định nghĩa.
Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là ; b là và điểm x0 (a; b).
a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x (x0 – h; x0 + h) và thì ta nói hàm số f(x) đạt cực đại tại x0.
b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và thì ta nói hàm số f(x) đạt cực tiểu tại x0.
- Chú ý:
1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.
Kí hiệu là fCĐ (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.
2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.
3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.
II. Điều kiện đủ để hàm số có cực trị
- Định lí 1
Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K hoặc trên K \ {x0}; với h > 0.
a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).
b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).
Ví dụ 1. Tìm các điểm cực trị của hàm số y = – 2x3 + 3x2.
Lời giải:
Hàm số xác định với mọi x.
Ta có: y’ = – 6x2 + 6x
Và y’ = 0
Bảng biến thiên:
Từ bảng biến thiên, suy ra x = 0 là điểm cực tiểu của hàm số và x = 1 là điểm cực đại của hàm số.
Ví dụ 2. Tìm các điểm cực trị của hàm số .
Lời giải:
Hàm số đã cho xác định với .
Ta có:
Vậy hàm số đã cho không có cực trị (vì theo khẳng định 3 của chú ý trên, nếu hàm số đạt cực trị tại x0 thì y’(x0) = 0).
III. Quy tắc tìm cực trị .
- Quy tắc 1.
1. Tìm tập xác định.
2. Tính f’(x). Tìm các điểm tại đó f’(x) bằng 0 hoặc f’(x) không xác định.
3. Lập bảng biến thiên.
4. Từ bảng biến thiên suy ra các điểm cực trị.
- Định lí 2.
Giả sử hàm số y = f(x) có đạo hàm cấp hai trong khoảng (x0 – h; x0 + h) với h > 0. Khi đó:
a) Nếu f’(x0) = 0; f”(x0) > 0 thì x0 là điểm cực tiểu;
b) Nếu f’(x0) = 0; f”(x0) < 0 thì x0 là điểm cực đại.
- Quy tắc II.
1. Tìm tập xác định
2. Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu xi ( i = 1; 2; ….; n) là các nghiệm của nó.
3. Tính f”(x) và f”(xi).
4. Dựa vào dấu của f”(xi) suy ra tính chất cực trị của điểm xi.
- Ví dụ 4. Tìm cực trị của hàm số .
Lời giải:
Hàm số đã cho xác định với mọi x
Ta có: f’(x) = 4x3 – 4x
Ta có: f”(x) = 12x2 – 4
Suy ra: f”(0) = – 4 < 0 nên x = 0 là điểm cực đại.
f”(1) = f”(– 1) = 8 > 0 nên x = 1 và x = –1 là điểm cực tiểu.
Kết luận:
Hàm số f(x) đạt cực tiểu tại x = 1 và x = – 1; fCT = f(1) = f(–1) = 9.
Hàm số f(x) đạt cực đại tại x = 0 và fCD = f(0) = 10.