Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 43

Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.

Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông  (ảnh 1)

Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m. Khi guồng quay đều, khoảng cách h (m) từ một ống đựng nước gắn tại một điểm của guồng đến mặt nước được tính theo công thức h = |y|, trong đó \(y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\), với x (phút) là thời gian quay của guồng (x ≥ 0).

(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020).

Khoảng cách h phụ thuộc vào thời gian quay x như thế nào?

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Với x ≥ 0, xét hàm số \[y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\]

                                      \[ = - 2,5\sin \left( {\frac{\pi }{2} - 2\pi x} \right) + 2\]

                                      \[ = - 2,5\cos \left( {2\pi x} \right) + 2\]

Khi đó h = |y| = |‒2,5cos2πx + 2|.

Vậy khoảng cách h phụ thuộc vào thời gian quay x theo công thức h = |‒2,5cos2πx + 2|.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 113

Câu 2:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 1;

Xem đáp án » 12/04/2024 99

Câu 3:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 98

Câu 4:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;

Xem đáp án » 12/04/2024 91

Câu 5:

Xét tính chẵn, lẻ của các hàm số:

a) y = sinx cosx;

b) y = tanx + cotx;

c) y = sin2x.

Xem đáp án » 12/04/2024 86

Câu 6:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = cotx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 81

Câu 7:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 76

Câu 8:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m [‒1;1], có bao nhiêu giá trị α [0; π] sao cho cosα = m

Xem đáp án » 12/04/2024 74

Câu 9:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ (ảnh 1)

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.

Xem đáp án » 12/04/2024 73

Câu 10:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx (ảnh 1)

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.

Xem đáp án » 12/04/2024 72

Câu 11:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 72

Câu 12:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị α (0; π) sao cho cotα = m.

Xem đáp án » 12/04/2024 68

Câu 13:

Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.

Làm tương tự như trên đối với các khoảng (pi; 2pi), (-pi; 0), (-2pi; -pi), ta có đồ thị  (ảnh 1)

Xem đáp án » 12/04/2024 63

Câu 14:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 63

Câu 15:

Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:

y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).

Xem đáp án » 12/04/2024 63

Câu hỏi mới nhất

Xem thêm »
Xem thêm »