Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.
Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m. Khi guồng quay đều, khoảng cách h (m) từ một ống đựng nước gắn tại một điểm của guồng đến mặt nước được tính theo công thức h = |y|, trong đó \(y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\), với x (phút) là thời gian quay của guồng (x ≥ 0).
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020).
Khoảng cách h phụ thuộc vào thời gian quay x như thế nào?
Với x ≥ 0, xét hàm số \[y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\]
\[ = - 2,5\sin \left( {\frac{\pi }{2} - 2\pi x} \right) + 2\]
\[ = - 2,5\cos \left( {2\pi x} \right) + 2\]
Khi đó h = |y| = |‒2,5cos2πx + 2|.
Vậy khoảng cách h phụ thuộc vào thời gian quay x theo công thức h = |‒2,5cos2πx + 2|.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = tanx nhận giá trị bằng ‒1;
Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = sinx nhận giá trị bằng 1;Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = cosx nhận giá trị bằng ‒1;
Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;
Xét tính chẵn, lẻ của các hàm số:
a) y = sinx cosx;
b) y = tanx + cotx;
c) y = sin2x.
Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = cotx nhận giá trị bằng 0.Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = tanx nhận giá trị bằng 0;
Dùng đồ thị hàm số, hãy cho biết:
Quan sát đồ thị hàm số y = cotx ở Hình 31.
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.
Quan sát đồ thị hàm số y = cotx ở Hình 31.
Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.
Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = cosx nhận giá trị bằng 0.
Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ (0; π) sao cho cotα = m.
Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.
Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = sinx nhận giá trị bằng 0;
Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:
y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).