IMG-LOGO

Câu hỏi:

20/07/2024 42

Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; sinx) với x [‒π; π] và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (Hình 23).

Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a (ảnh 1)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lấy thêm một số điểm (x; sinx) với x [‒π; π] trong bảng sau và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (hình vẽ).

Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a (ảnh 2)Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a (ảnh 3)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 114

Câu 2:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 1;

Xem đáp án » 12/04/2024 100

Câu 3:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng ‒1;

Xem đáp án » 12/04/2024 99

Câu 4:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;

Xem đáp án » 12/04/2024 92

Câu 5:

Xét tính chẵn, lẻ của các hàm số:

a) y = sinx cosx;

b) y = tanx + cotx;

c) y = sin2x.

Xem đáp án » 12/04/2024 88

Câu 6:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = cotx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 83

Câu 7:

Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:

Hàm số y = tanx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 78

Câu 8:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m [‒1;1], có bao nhiêu giá trị α [0; π] sao cho cosα = m

Xem đáp án » 12/04/2024 76

Câu 9:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ (ảnh 1)

Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.

Xem đáp án » 12/04/2024 75

Câu 10:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = cosx nhận giá trị bằng 0.

Xem đáp án » 12/04/2024 75

Câu 11:

Quan sát đồ thị hàm số y = cotx ở Hình 31.

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx (ảnh 1)

Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.

Xem đáp án » 12/04/2024 74

Câu 12:

Dùng đồ thị hàm số, hãy cho biết:

Với mỗi m ℝ, có bao nhiêu giá trị α (0; π) sao cho cotα = m.

Xem đáp án » 12/04/2024 69

Câu 13:

Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.

Làm tương tự như trên đối với các khoảng (pi; 2pi), (-pi; 0), (-2pi; -pi), ta có đồ thị  (ảnh 1)

Xem đáp án » 12/04/2024 65

Câu 14:

Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:

Hàm số y = sinx nhận giá trị bằng 0;

Xem đáp án » 12/04/2024 64

Câu 15:

Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:

y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).

Xem đáp án » 12/04/2024 64

Câu hỏi mới nhất

Xem thêm »
Xem thêm »