Cho tập A={2;5}Hỏi có thể lập được bao nhiêu số có 10 chữ số, các chữ số lấy từ tập A sao cho không có chữ số 2 nào đứng cạnh nhau?
A. 144 số
B. 143 số
C. 1024 số
D. 512 số
TH1: Có 10 chữ số 5:
Chỉ có duy nhất 1 số.
TH2: Có 9 chữ số 5 và 1 chữ số 2 .
Xếp 9 chữ số 5 thành 1 hàng ngang
có 1 cách. Khi đó ta sẽ tạo nên 10 vách
ngăn. Việc còn lại là xếp 1 chữ số 2 vào
10 vách ngăn đó, có 10 cách.
Vậy trường hợp này có 10 số.
TH3: Có 8 chữ số 5 và 2 chữ số 2.
Xếp 8 chữ số 5 thành 1 hàng ngang có 1 cách.
Khi đó ta sẽ tạo nên 9 vách ngăn.
Việc còn lại là xếp 2 chữ số 2 vào 9 vách
ngăn đó, có cách.
Vậy trường hợp này có 36 số.
TH4: Có 7 chữ số 5 và 3 chữ số 2 .
Xếp 7 chữ số 5 thành 1 hàng ngang có 1 cách.
Khi đó ta sẽ tạo nên 8 vách ngăn.
Việc còn lại là xếp 3 chữ số 2 vào
8 vách ngăn đó, có cách.
Vậy trường hợp này có 56 số.
TH5: Có 6 chữ số 5 và 4 chữ số 2 .
Xếp 6 chữ số 5 thành 1 hàng ngang có 1 cách.
Khi đó ta sẽ tạo nên 7 vách ngăn.
Việc còn lại là xếp 4 chữ số 2 vào 7 vách
ngăn đó, có cách.
Vậy trường hợp này có 35 số.
TH6: Có 5 chữ số 5 và 5 chữ số 2.
Xếp 5 chữ số 5 thành 1 hàng ngang
có 1 cách. Khi đó ta sẽ tạo nên 6 vách ngăn.
Việc còn lại là xếp 5 chữ số 2 vào 6 vách
ngăn đó, có cách.
Vậy trường hợp này có 6 số.
Theo quy tắc cộng ta có tất cả:
1+10+36+56+35+6=144 số.
Đáp án cần chọn là: A
Chú ý
Nguyên tắc vách ngăn: Khi xếp n phần
tử sẽ tạo ra n+1vách ngăn. Rất nhiều
học sinh mắc sai lầm là chỉ tạo
ra nn vách ngăn.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lí, 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 em học sinh A,B,C,D,E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng cho các em học sinh sao cho sau khi tặng xong, mỗi một trong ba loại sách trên đều còn ít nhất một cuốn.
Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có 7 chữ số khác nhau mà hai chữ số chẵn đứng kề nhau?
Một chồng sách gồm 4 quyển sách Toán, 3 quyển sách Vật lý, 5 quyển sách Hóa học. Hỏi có bao nhiêu cách xếp các quyển sách trên thành một hàng ngang sao cho 4 quyển sách Toán đứng cạnh nhau, 3 quyển Vật lý đứng cạnh nhau?
Từ các chữ số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số có ba chữ số khác nhau từng đôi một và chia hết cho 6. Kết quả cần tìm là:
Có 6 học sinh và 3 thầy giáo A ,B,C . Hỏi có bao nhiêu cách xếp chỗ cho 9 người đó ngồi trên một hàng ngang có 9 ghế sao cho mỗi thầy giáo ngồi giữa hai học sinh?
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
Một nhóm học sinh có 3 em nữ và 7 em trai. Hỏi có bao nhiêu cách sắp xếp 10 em này thành một hàng ngang sao cho giữa hai em nữ bất kì đều không có một em nam nào?
Hai đơn vị thi đấu cờ tướng A và B lần lượt có 5 người và 6 người. Cần chọn ra mỗi đơn vị 3 người để ghép cặp thi đấu với nhau. Hỏi có bao nhiêu cách thực hiện như thế?
I. Hoán vị
1. Định nghĩa
- Định nghĩa: Cho tập hợp A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
- Nhận xét: Hai hoán vị của n phần tử khác nhau ở thứ tự sắp xếp.
Chẳng hạn, hai hoán vị abc và cab của ba phần tử a; b; c là khác nhau.
2. Số các hoán vị
Kí hiệu: Pn là số các hoán vị của n phần tử.
- Định lí: Pn = n.(n – 1).(n – 2)….2.1
- Chú ý: Kí hiệu n.(n – 1)…2.1 là n! (đọc là n là giai thừa), ta có: Pn = n!.
- Ví dụ 1. Có bao nhiêu cách xếp 10 học sinh thành một hàng ngang.
Lời giải:
Số cách xếp 10 học sinh thành một hàng ngang là 10! cách.
II. Chỉnh hợp
1. Định nghĩa.
- Cho tập hợp A gồm n phần tử (n ≥ 1).
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
- Ví dụ 2. Lớp 11A2 có 40 học sinh. Khi đó; mỗi cách chọn ra 4 bạn làm tổ trưởng tổ 1; tổ 2; tổ 3; tổ 4 chính là số chỉnh hợp chập 4 của 40 học sinh.
2. Số các chỉnh hợp
- Kí hiệu là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n) .
- Định lí:
- Ví dụ 3. Từ năm điểm phần biệt A; B; C; D; E ta lập được bao nhiêu vectơ khác có điểm đầu và điểm cuối là năm điểm đã cho.
Lời giải:
Một vectơ được xác định khi biết điểm đầu và điểm cuối của nó.
Số vecto khác có điểm đầu và điểm cuối là năm điểm đã cho chính là chỉnh hợp chập 2 của 5 phần tử:
Do đó, ta có: vectơ thỏa mãn đầu bài.
- Chú ý:
a) Với quy ước 0! = 1 ta có: .
b) Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó.
Vì vậy: .
III. Tổ hợp
1. Định nghĩa.
- Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.
- Chú ý: Số k trong định nghĩa cần thỏa mãn điều kiện 1 ≤ k ≤ n. Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.
- Ví dụ 4. Cho tập A = {3; 4; 5; 6}.
Ta liệt kê các tổ hợp chập 3 của A là: {3; 4; 5}; {3; 4; 6}; {3; 5; 6}; {4; 5; 6}.
2. Số các tổ hợp.
Kí hiệu là số các tổ hợp chập k của n phần tử ( 0 ≤ k ≤ n).
- Định lí: .
Ví dụ 5. Cho 8 điểm phân biệt A; B; C; D; E; F; G; H, trong đó không có 3 điểm nào thẳng hàng, ta lập được bao nhiêu tam giác có 3 đỉnh là 8 điểm đã cho.
Lời giải:
Mỗi tam giác được lập là 1 tổ hợp chập 3 của 8 (điểm).
Vì vậy số tam giác có 3 đỉnh là 8 điểm đã cho là 56.
3. Tính chất của các số
a) Tính chất 1.
.
Ví dụ 6. .
b) Tính chất 2 (công thức Pa-xcan).
Ví dụ 7. .