Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 340

Cho hàm số y=x+1x1 có đồ thị là C. Gọi MxM;yM là một điểm bất kì trên (C). Khi tổng khoảng cách từ M đến hai trục tọa độ là nhỏ nhất, tính tổng  

A. 1

B. 2-22 

Đáp án chính xác

C. 22-1

D. 2-2

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Cho hàm số  y = x + 1 /x − 1  có đồ thị là  ( C ) . Gọi  M ( x M ; y M )  là một điểm bất kì trên (C). Khi tổng khoảng cách (ảnh 1)

Bảng biến thiên:

Dựa vào BBT ta thấy  x+x+1x1222=222

Dấu bằng xảy ra khi  x=12y=12xM+yM=222

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=ax3+bx2+cx+d có đồ thị như hình bên:

Giá trị nguyên lớn nhất của tham số m để hàm số y=fxm đồng biến trên khoảng 10;+ là:

Xem đáp án » 12/01/2022 1,255

Câu 2:

Cho hàm số y=x33mx2+3m21x+2020. Có tất cả bao nhiêu giá trị nguyên của tham số m sao cho hàm số có giá trị nhỏ nhất trên khoảng  

Xem đáp án » 12/01/2022 378

Câu 3:

Cho f (x) mà đồ thị hàm số y=f'(x) như hình vẽ bên

Bất phương trình fx>sinπx2+m nghiệm đúng với mọi x1;3 khi và chỉ khi:

Xem đáp án » 12/01/2022 373

Câu 4:

Cho Mm bằng:

Xem đáp án » 12/01/2022 361

Câu 5:

Cho hai số thực x, y thỏa mãn x2+y24x+6y+4+y2+6y+10=6+4xx2Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức T=x2+y2a. Có bao nhiêu giá trị nguyên thuộc đoạn 10;10 của tham số a để M2m ?

Xem đáp án » 12/01/2022 335

Câu 6:

Cho x, y là các số thực thỏa mãn 2x+y13x+y+1=3x+3y+1. Tìm giá trị nhỏ nhất của biểu thức  

Xem đáp án » 12/01/2022 327

Câu 7:

Cho các số thực x, y thay đổi thỏa mãn x2+2y2+2xy=1 và hàm số ft=t4t2+2. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của  Tính M + m?

Xem đáp án » 12/01/2022 281

Câu 8:

Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số ên đoạn 0;4 bằng – 1.

Xem đáp án » 12/01/2022 232

Câu 9:

Cho hàm số f (x). Biết rằng hàm số f'x có đồ thị như hình dưới đây. Trên đoạn 4;3, hàm số  gx=2fx+1x2 đạt giá trị nhỏ nhất tại điểm

Xem đáp án » 12/01/2022 228

LÝ THUYẾT

I. Định nghĩa

Cho hàm số y = f(x) xác định trên tập D.

a) Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x)M với mọi x thuộc D và tồn tại x0 D sao cho f(x0) = M.

Kí hiệu: M=maxDf(x).

b) Số m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x)m với mọi x thuộc D và tồn tại x0 D sao cho f(x0) = m.

Kí hiệu: m=minDf(x).

- Ví dụ 1. Cho hàm số y = f(x) có bảng biến thiên như sau:

Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (ảnh 1)

Dựa vào bảng biến thiên ta thấy, hàm số không có giá trị lớn nhất.

Giá trị nhỏ nhất của hàm số là – 9 tại x = – 3.

II. Cách tính giá trị  lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

1. Định lí.

Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.

2. Quy tắc tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn.

- Nhận xét:

Nếu đạo hàm f’(x) giữ nguyên dấu trên đoạn [a; b] thì hàm số đồng biến hoặc nghịch biến trên cả đoạn. Do đó, f(x) đạt được giá trị lớn nhất và giá trị nhỏ nhất tại các đầu mút của đoạn.

Nếu chỉ có một số hữu hạn các điểm xi (xi < xi+ 1) mà tại đó f’(x) bằng 0 hoặc không xác định thì hàm số y = f(x) đơn điệu trên mỗi khoảng (xi;  xi+1). Rõ ràng, giá trị lớn nhất (giá trị nhỏ nhất) của hàm số trên đoạn [a; b] là số lớn nhất (số nhỏ nhất) trong các giá trị của hàm số tại hai đầu mút a; b và tại các điểm xi nói trên.

- Quy tắc:

1. Tìm các điểm x1; x2; …; xn trên khoảng (a; b), tại đó f’(x) bằng 0 hoặc f’(x) không xác định.

2. Tính f(a); f(x1); f(x2); ….; f(xn); f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:

M=max[a;b]f(x);m=min[a;b]f(x).

- Chú ý: Hàm số liên tục trên một khoảng có thể không có giá trị lớn nhất và giá trị nhỏ nhất trên khoảng đó. Chẳng hạn hàm số f(x)=1x không có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng (0; 1).

Tuy nhiên, cũng có những hàm số có giá trị lớn nhất hoặc giá trị nhỏ nhất trên một khoảng như ví dụ sau:

Ví dụ 2. Tìm giá trị lón nhất, nhỏ nhất của hàm số y=2x-x2  trên khoảng (0;32).

Lời giải:

Điều kiện: 2x – x2 00x2.

Ta có:

y'=(2x-x2)'22x-x2=1-x2x-x2y'=01-x=0x=1

Bảng biến thiên:

Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (ảnh 1)

Từ bảng biến thiên trên ta thấy, trên khoảng (0;32) hàm số có 1 điểm cực trị duy nhất là điểm cực đại x = 1 và tại đó hàm số đạt giá trị lớn nhất Max(0;32)f(x)=f(1)=1.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »