Cho chóp tứ giác S.ABCD có hai đường chéo AC và BD. Gọi E và F lần lượt là giao điểm của AB và CD, AD và BC. Một mặt phẳng () đi qua điểm M trên cạnh SB (M nằm giữa S và B) song song với SE và SF (SE không vuông góc với SF). Thiết diện của hình chóp cắt bởi mp() có số cạnh là:
A. 3
B. 4
C. 5
D. 6
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD; BC và G là trọng tâm tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của IJG và hình chóp là một hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. qua BD và song song với SA cắt SC tại K. Chọn khẳng định đúng?
Cho hình chóp S.ABCD. Gọi M, N là hai điểm lần lượt thuộc cạnh AB và CD; là mặt phẳng đi qua MN và song song với SA. Tìm điều kiện của MN để thiết diện của hình chóp khi cắt bởi mp là một hình thang.
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là một điểm trên cạnh CD; () là mặt phẳng qua M và song song với SA và BC. Thiết diện của mp() với hình chóp là:
Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi () là mặt phẳng chứa đường thẳng MN và song song với CD. Xác định vị trí của điểm N trên cạnh BC sao cho thiết diện là hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là các điểm nằm trên các cạnh BC, SC, SD, AD sao cho MN // BS, NP // CD, MQ // CD. Hỏi PQ song song với mặt phẳng nào sau đây?
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD và BC và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)
Cho hình chóp S.ABCD. Gọi M, N lần lượt là trọng tâm của tam giác SAB và ABC. Khi đó MN song song với
Cho tứ diện ABCD có AB = CD. Mặt phẳng () qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD và BD tại M, N, E, F, I, J. Xét các khẳng định sau:
(1) MN // (SCD)
(2) EF // (SAD)
(3) NE // (SAC)
(3) IJ // (SAB)
Có bao nhiêu khẳng định đúng?
Cho tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM = 2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng () đi qua M và song song với SA, BD cắt SO, SB, AB tại N, P, Q. Tứ giác MNPQ là hình gì?
Cho đường thẳng d song song với mặt phẳng () , nếu mặt phẳng () chứa d mà cắt () theo giao tuyến d' thì:
I. Vị trí tương đối của đường thẳng và mặt phẳng.
Cho đường thẳng d và mặt phẳng (α). Tùy theo số điểm chung của d và (α), ta có ba trường hợp sau:
- d và (α) không có điểm chung. Khi đó ta nói d song song với (α) hay (α) song song với d và kí hiệu là d // (α) hay (α) // d.
- d và (α) chỉ có một điểm chung duy nhất M. Khi đó ta nói d và (α) cắt nhau tại điểm M và kí hiệu .
- d và (α) có từ hai điểm chung trở lên. Khi đó, d nằm trong (α) hay (α) chứa d và kí hiệu .
II. Tính chất
- Định lí. Nếu đường thẳng d không nằm trong mặt phẳng (α) và d song song với đường thẳng d’ nằm trong (α) thì d song song với (α).
Ta có: .
- Định lí. Cho đường thẳng a song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa a và cắt (α) theo giao tuyến b thì b song song với a.
- Hệ quả. Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Định lí. Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
Ví dụ 1. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O, O1 lần lượt là tâm của ABCD và ABEF, gọi M là trung điểm của CD. Chứng minh:
a) OO1 // mp (BEC).
b) OO1 // mp (AFD)
Lời giải.
a) Xét tam giác ACE có O; lần lượt là trung điểm của AC; AE (tính chất hình hình hành).
Suy ra O là đường trung bình trong tam giác ACE và O // EC.
Mà EC thuộc mp (BEC) nên O // mp (BEC) (đpcm).
b) Tương tự; O là đường trung bình của tam giác BFD nên O // FD.
Mà FD nằm trong mp(AFD)
Suy ra: O // mp (AFD) (đpcm).
Ví dụ 2. Cho tứ diện ABCD. Gọi H là một điểm nằm trong tam giác ABC và (α) là mặt phẳng đi qua H song song với AB và CD. Thiết diện của tứ diện cắt bởi mp (α) là hình gì?
Lời giải:
+ Qua H kẻ đường thẳng song song AB và đường thẳng này cắt BC, AC lần lượt tại M, N.
+ Từ N kẻ NP song song với CD
Từ P kẻ PQ song song với AB .
+ Ta có: MN // PQ // AB
Suy ra 4 điểm M; N; P và Q đồng phẳng .
Suy ra thiết diện của tứ diện cắt bởi mp (α) là tứ giác MNPQ.
+ Ta chứng minh MNPQ là hình bình hành.
Trước tiên, ta chứng minh PN // QM.
Ta có:
Suy ra: QM // PN // CD
Lại có: PQ // MN
Do đó, tứ giác MNPQ là hình bình hành.