Thứ bảy, 03/05/2025
IMG-LOGO

Câu hỏi:

09/07/2024 260

Phương trình 2log5x+3=x có tất cả bao nhiêu nghiệm?

A. 1

Đáp án chính xác

B. 2

C. 3

D. 0

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Điều kiện: x > - 3

Do  nên để phương trình có nghiệm thì x > 0

Lấy logarit cơ số 2 của hai vế phương trình, ta được 

Đặt

Chia hai vế phương trình cho 5x, ta được 

Đây là phương trình hoành độ giao điểm của đường thẳng y = 1 (hàm hằng) và đồ thị hàm số  (hàm số này nghịch biến vì nó là tổng của hai hàm số nghịch biến)

Do đó phương trình có nghiệm duy nhất. Nhận thấy t = 1 thỏa mãn phương trình

Với  (tm)

Vậy phương trình có nghiệm duy nhất

Đáp án cần chọn là: A.

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình log22x-5m+1log2x+4m2+m=0. Biết phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn x1+x2=165. Giá trị của x1-x2 bằng:

Xem đáp án » 18/01/2022 3,001

Câu 2:

Giả sử m là số thực sao cho phương trình log32x-m+2log3x+3m-2=0 có hai nghiệm x1,x2 phân biệt thỏa mãn x1.x2=9.

Khi đó m thỏa mãn tính chất nào sau đây?

Xem đáp án » 18/01/2022 1,519

Câu 3:

Phương trình log3x2-2x+1x+x2+1=3x có tổng tất cả các nghiệm bằng:

Xem đáp án » 18/01/2022 1,039

Câu 4:

Có bao nhiêu số nguyên m thuộc -2020;2020 sao cho phương trình 4x-12-4m.2x2-2x+3m-2=0 có bốn nghiệm phân biệt?

Xem đáp án » 17/01/2022 1,004

Câu 5:

Cho phương trình 2log42x2-x+2m-4m2 +log12x2+mx-2m2=0. Tìm tất cả các giá trị của tham số m sao cho phương trình đã cho có hai nghiệm phân biệt x1,x2 thỏa mãn 

Xem đáp án » 18/01/2022 401

Câu 6:

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình 16x-2.12x+m-2.9x=0 có nghiệm dương?

Xem đáp án » 18/01/2022 390

Câu 7:

Hỏi có bao nhiêu giá trị m nguyên trong đoạn -2017;2017 để phương trình logmx=2logx+1 có nghiệm duy nhất?

Xem đáp án » 18/01/2022 346

Câu 8:

Có bao nhiêu số nguyên m để phương trình log23x2+3x+m+12x2-x+1=x2-5x+2-m có hai nghiệm phân biệt lớn hơn 1

Xem đáp án » 18/01/2022 323

Câu 9:

Các giá trị thực của tham số m để phương trình: 12x+4-m.3x-m=0 có nghiệm thuộc khoảng (-1; 0) là

Xem đáp án » 17/01/2022 292

Câu 10:

Biết rằng phương trình log129x2+log3x281-7=0 có hai nghiệm phân biệt x1,x2. Tính 

Xem đáp án » 18/01/2022 286

Câu 11:

Phương trình 223x3.2x-1024x2+23x3=10x2-x có tổng các nghiệm gần nhất với số nào dưới đây

Xem đáp án » 18/01/2022 281

Câu 12:

Hỏi phương trình 2log3cotx=log2cosx có bao nhiêu nghiệm trong khoảng 

Xem đáp án » 18/01/2022 273

Câu 13:

Cho phương trình log3x.log5x=log3x+log5x. Khẳng định nào sau đây là đúng?

Xem đáp án » 18/01/2022 267

Câu 14:

Tính tổng T tất cả các nghiệm của phương trình 

Xem đáp án » 18/01/2022 248

Câu 15:

Tìm các giá trị m để phương trình 2x+!=m.2x+2-2x+3 luôn thỏa, 

Xem đáp án » 18/01/2022 237

LÝ THUYẾT

I. Phương trình mũ

1. Phương  trình mũ cơ bản

– Phương trình mũ cơ bản có dạng: ax = b (a > 0; a ≠ 1).

Để giải phương trình trên, ta sử dụng định nghĩa logarit.

Với b > 0 ta có: ax = b x = logab.

Với b ≤ 0, phương trình vô nghiệm.

– Minh họa bằng đồ thị

Hoành độ giao điểm của đồ thị hai hàm số y = ax và y = b là nghiệm của phương trình ax = b.

Số nghiệm của phương trình là số giao điểm của hai đồ thị.

Rõ ràng, nếu b ≤ 0 thì hai đồ thị không cắt nhau nên phương trình vô nghiệm.

Nếu b > 0 ta có hai đồ thị như hình dưới đây. Trên mỗi hình, hai đồ thị luôn cắt nhau tại một điểm nên phương trình có nghiệm duy nhất.

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

Kết luận:

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

– Ví dụ 1. Giải phương trình 2x + 1 + 2x + 2 = 16.

Lời giải:

Ta có: 2x + 1 + 2x + 2 = 16.

2.2x + 4.2x = 16

6.2x = 16

2x=83x=log283

Vậy x=log283.

2. Cách giải một số phương trình mũ cơ bản

a) Đưa về cùng cơ số.

Ví dụ 2. Giải phương trình 3x+ 2=(13)6-2x

Lời giải:

Ta có: 3x+ 2=(13)6-2x

 x + 2 = 2x – 6

x = 8

Vậy x = 8.

b) Đặt ẩn phụ

– Ví dụ 3. Giải phương trình 4x – 5. 2x  + 6 = 0

Lời giải:

Đặt t = 2x (với t > 0)

Phương trình đã cho trở thành: t2 – 5t + 6 = 0

[t=2t=3[2x=  2x=  12x=  3x=log23

Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = log23.

c) Logarit hóa.

– Ví dụ 4. Giải phương trình: 3x.  5x2=1

Lời giải:

Lấy logarit cơ số 3 hai vế ta được:

log3(3x.  5x2)=log31x+x2log35=0x(1+xlog35)=0[x=0x=-1log35=-log53

Vậy phương trình đã cho có 2 nghiệm là x = 0 và x = – log53.

II. Phương trình logarit

– Phương trình logarit là phương trình có chứa ẩn số trong biểu thức dưới dấu logarit.

– Ví dụ 5. Các phương trình logx2= 4;log32x+ 2log4x=0… đều là phương trình logarit.

1. Phương trình logarit cơ bản

– Phương trình logarit cơ bản có dạng: logax = b (a > 0; a ≠ 1).

Theo định nghĩa logarit ta có:

logax = b x  = ab

– Minh họa bằng đồ thị

Vẽ đồ thị hàm số y = loga x và đường thẳng b trên cùng một hệ tọa độ.

Bài 5: Phương trình mũ và phương trình lôgarit (ảnh 1)

Trong cả hai trường hợp, ta đều thấy đồ thị của các hàm số y = logax và đường thẳng y = b luôn cắt nhau tại một điểm với mọi bR.

Kết luận: Phương trình logax  = b (a > 0; a ≠ 1) luôn có nghiệm duy nhất x = ab với mọi b.

2. Cách giải một số phương trình logarit đơn giản.

a) Đưa về cùng cơ số

Ví dụ 6. Giải phương trình log3x + log9x = 6.

Lời giải:

Ta có: log3x + log9x = 6

log3x+12log3x=  632log3x=  6log3x=4

x = 34 = 81.

Vậy nghiệm của phương trình đã cho là x = 81.

b) Đặt ẩn phụ

– Ví dụ 7. Giải phương trình log52x+3log5x=0

Lời giải:

Đặt t =log5x, phương trình đã cho trở thành:

t2 + 3t = 0 nên t = 0 hoặc t = –3.

Với t = 0 thì log5x = 0 nên x = 1.

Với t = –3 thì log5x = –3 nên x = 5–3.

Vậy phương trình đã cho có 2 nghiệm là x = 1 và x = 5–3.

c) Mũ hóa

– Ví dụ 8. Giải phương trình: log3(90 – 3x) = x + 2

Lời giải:

Điều kiện của phương trình là 90 – 3x > 0.

Phương trình đã cho tương đương với:

90 – 3x = 3x + 2 hay 90 – 3x = 9.3x

10.3x = 90
3x = 9 nên x = 2 (thỏa mãn điều kiện)

Vậy nghiệm của phương trình đã cho là x = 2.