Thứ năm, 12/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 225

Hàm số nào không là nguyên hàm của hàm số : y=3x4?

A. y=12x3

Đáp án chính xác

B. y=3x55-1

C. 3x5+15

D. y=3x55-35

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Họ nguyên hàm của hàm số f(x)=2x+sin2x là:

Xem đáp án » 05/02/2022 2,374

Câu 2:

Tìm nguyên hàm của hàm số f(x) = sinx.cos2x

Xem đáp án » 05/02/2022 2,178

Câu 3:

Họ nguyên hàm của hàm số f(x)=sin2x là:

Xem đáp án » 05/02/2022 668

Câu 4:

Nguyên hàm của hàm số y=cotx là:

Xem đáp án » 05/02/2022 404

Câu 5:

Họ tất cả các nguyên hàm của hàm sốf(x)=sinx+2x là

Xem đáp án » 05/02/2022 387

Câu 6:

Cho I=sinxdx, nếu đặt u=x

Xem đáp án » 05/02/2022 310

Câu 7:

Họ nguyên hàm của hàm số f(x)=2sinx.cos2x là:

Xem đáp án » 05/02/2022 261

Câu 8:

Tìm hàm số F(x) biết F'(x)=3x2+2x-1 và đồ thị hàm số y=F(x) cắt trục tung tại điểm có tung độ bằng 2. Tổng các hệ số của F(x) là:

Xem đáp án » 05/02/2022 248

Câu 9:

Tìm họ nguyên hàm của hàm số:f(x)=e2018x

Xem đáp án » 05/02/2022 237

Câu 10:

Nguyên hàm của hàm số f(x)=1x là:

Xem đáp án » 05/02/2022 234

Câu 11:

Tìm họ nguyên hàm của hàm số f(x)=52x

Xem đáp án » 05/02/2022 231

Câu 12:

Họ nguyên hàm của hàm số 2x+32x2-x-1dx là

Xem đáp án » 05/02/2022 224

Câu 13:

Nếu f(x)dx=x33+ex+C thì f(x) bằng:

Xem đáp án » 05/02/2022 222

Câu 14:

Cho hàm số y = f(x) liên tục trên R và thỏa mãn f(x)dx=4x3-3x2+2x+C. Hàm số f(x) là hàm số nào trong các hàm số sau?

Xem đáp án » 05/02/2022 209

Câu 15:

Tìm nguyên hàm của hàm số f(x)=sin2xcos2x-1

Xem đáp án » 05/02/2022 203

LÝ THUYẾT

I. Nguyên hàm và tính chất

1. Nguyên hàm.

- Định nghĩa

Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng của R. 

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi xK.

Ví dụ 1.

- Hàm số F(x) = sinx + 6 là một nguyên hàm của hàm số f(x) = cosx trên khoảng (-;+) vì F’(x) = (sinx + 6)’ = cosx với x(-;+).

- Hàm số F(x)=x+ 2x-3 là một nguyên hàm của hàm số f(x)=-5(x-3)2 trên khoảng (-;  3)(3;+) 

F'(x)=(x+ 2x-3)'=-5(x-3)2=f(x) với x(-;  3)(3;+).

 - Định lí 1.

 Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

- Định lí 2.

Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x)+C;CR là họ tất cả các nguyên hàm của f(x) trên K.

Kí hiệu: f(x)𝑑x=F(x)+C .

- Chú ý: Biểu thức f(x)dx chính là vi phân của nguyên hàm F(x) của f(x), vì dF(x) = F’(x)dx = f(x)dx.

Ví dụ 2.

a) Với x(-;+) ta có: ∫x3𝑑x=x44+C;

b) Với x(-;+) ta có: ∫ex𝑑x=ex+C;

c) Với x(0;+) ta có: 12x𝑑x=x+C.

2. Tính chất của nguyên hàm

- Tính chất 1.

∫f'(x)𝑑x=f(x)+C

Ví dụ 3.

(4x)'𝑑x=∫4x.ln4.dx=  4x+C

- Tính chất 2.

kf(x)𝑑x=k.f(x)𝑑x  (k là hằng số khác 0).

- Tính chất 3.

[f(x)±g(x)]𝑑x=f(x)𝑑x±g(x)𝑑x.

Ví dụ 4. Tìm nguyên hàm của hàm số f(x)=  3x2+  2sinx trên khoảng (-;+).

Lời giải:

Với x(-;+) ta có:

(3x2+ 2sinx)𝑑x=3x2𝑑x+  2sinxdx=x3+ 2.(-cosx) +C =x3-2cosx +C

3. Sự tồn tại nguyên hàm

Định lí:

Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

Ví dụ 5.

a) Hàm số y=x có nguyên hàm trên khoảng (0;+).

x𝑑x=∫x12𝑑x=23x32+C=23xx+C

b) Hàm số y = 1x có nguyên hàm trên khoảng (-;  0)(0;+)

1x𝑑x=ln|x|+C

4. Bảng nguyên hàm của một số hàm số thường gặp

0𝑑x=C

∫axdx=axlna+C(a> 0;a1)

𝑑x=x+C

cosxdx= sinx +C

∫xαdx=1α + 1xα +1+C(α  -1)

sinxdx=-cosx + C

1x𝑑x=ln|x|+C

1cos2x𝑑x=tanx+C

∫ex𝑑x=ex+C

1sin2x𝑑x=-cotx+C

 Ví dụ 6. Tính:

a) (3x4+x3)𝑑x

b) (5ex- 4x+ 2)𝑑x

Lời giải:

a)

(3x4+x3)𝑑x=3x4𝑑x+x3𝑑x=  3x4𝑑x+x13𝑑x

=  3.x55+34.x43+C=3x55+3xx34+C

 b) (5ex- 4x+ 2)𝑑x

= 5ex𝑑x-  16.∫ 4x𝑑x=  5.ex-16.4xln4+C

- Chú ý: Từ đây, yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

II. Phương pháp tính nguyên hàm.

1.  Phương pháp đổi biến số

- Định lí 1.

Nếu f(u)𝑑u=F(u)+C  và u = u(x) là hàm số có đạo hàm liên tục thì:

f(u(x)).u'(x)dx=F(u(x))+C.

Hệ quả: Nếu u = ax + b (a ≠ 0), ta có:

f(ax+b)𝑑x=1aF(ax+b)+C.

Ví dụ 7. Tính (3x+ 2)3𝑑x.

Lời giải:

Ta có: ∫u3𝑑u=u44+C nên theo hệ quả ta có:

(3x+ 2)3𝑑x=(3x+2)44+C.

Chú ý:

Nếu tính nguyên hàm theo biến mới u (u = u(x)) thì sau khi tính nguyên hàm, ta phải trở lại biến x ban đầu bằng cách thay u bởi u(x).

Ví dụ 8. Tính sinx.cos2xdx.

Lời giải:

Đặt u = cosx. Suy ra: du = – sinx. dx

Khi đó, nguyên hàm đã cho trở thành:

∫u2.(-du)= -∫u2𝑑u =-u33+C

Thay u = cosx vào kết quả ta được:

sinx.cos2xdx=-cos3x3+C

2. Phương pháp tính nguyên hàm từng phần.

- Định lí 2.

Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:

u(x).v'(x).dx=u(x).v(x)-∫u'(x).v(x)dx.

- Chú ý.

Vì u’(x) dx = du; v’(x) dx = dv. Nên đẳng thức trên còn được viết ở dạng:

u𝑑v=uv-v𝑑u.

Đó là công thức nguyên hàm từng phần.

Ví dụ 9. Tính

a) xlnxdx;

b) xsinxdx;

c) (5-x).exdx

Lời giải:

a) xlnxdx

Đặt {u=lnxdv=xdx{du=1xdxv=x22

Ta có:

 xlnxdx=x22.lnx-x22.1xdx

=x22.lnx-12x𝑑x=x22.lnx-12.x22+C

=x22.lnx-x24+C.

b) xsinxdx;

Đặt {u=xdv=sinxdx{du=dxv=-cosx

Khi đó:

xsinxdx=-x.cosx +cosxdx= -x.cosx +sinx +C

c) (5-x).exdx

Đặt {u=5-xdv=exdx{du= -dxv=ex

Khi đó:

(5-x).exdx=(5-x).ex--exdx

=(5-x).ex+∫ex𝑑x

=(5-x).ex+ex+C.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »