Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 252

Cho I=03ln21ex3+22dx. Giả sử đặt t = ex 3+ 2 thì ta được:

A. I=334dtt2t-2

Đáp án chính xác

B. I=34dtt2t-22

C. I=334t dtt2t-2

D. I=335dtt2t-2

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đặt t = ex3+2(t-2)3=ex

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đổi cận: x = 0 thì t = 3 ; x = 3ln2 thì t = 4

Khi đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tích phân: aπa-asin2xdxaπa-acos2xdx, π2>a>0. Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 08/02/2022 398

Câu 2:

Cho I=122xx2-1dx và u=x2-1. Khẳng định nào dưới đây là sai?

Xem đáp án » 08/02/2022 348

Câu 3:

Kết quả của tích phân -10 x + 1 + 2 x-1dx được viết dưới dạng a+bln2. Tính giá trị của a+b.

Xem đáp án » 08/02/2022 290

Câu 4:

Tích phân 0e3x2-7x+1x+1dx có giá trị bằng

Xem đáp án » 08/02/2022 286

Câu 5:

Tính tích phân I=12eln2x+1xdx.

Xem đáp án » 08/02/2022 275

Câu 6:

Biết 05fxdx=150gtdt=2. Giá trị của 05fx+gxdx

Xem đáp án » 08/02/2022 258

Câu 7:

Tính 0ax(3-x)3dx.

Xem đáp án » 08/02/2022 252

Câu 8:

Giả sử 15 dx 2x-1 =lnK. Giá trị của K là:

Xem đáp án » 08/02/2022 250

Câu 9:

Cho I = 03xdx2x+1+x+1=137a-b. Khi đó a+b bằng?

Xem đáp án » 08/02/2022 245

Câu 10:

Cho 0π6sinnxcosxdx=164. Tìm n?

Xem đáp án » 08/02/2022 244

Câu 11:

Nếu adfxdx=5, bdfxdx=2 với a < d < b thì abfxdx bằng

Xem đáp án » 08/02/2022 242

Câu 12:

Cho tích phân 0π2esin2xsinxcos3xdx. Nếu biến đổi số t=sin2x thì:

Xem đáp án » 08/02/2022 237

Câu 13:

Biết tích 14ftdt=3 và 12ftdt=3. Phát biểu nào sau đây nhận giá trị đúng?

Xem đáp án » 08/02/2022 235

Câu 14:

Tính tích phân I =0π2 x cosx (a-x)dx. 

Xem đáp án » 08/02/2022 234

Câu 15:

Cho I=1e1+xexx(ex+lnx)dx=alnee+be. Tính giá trị của a-b.

Xem đáp án » 08/02/2022 231

LÝ THUYẾT

I. Khái niệm tích phân

1. Diện tích hình thang cong

- Cho hàm số y = f(x) liên tục, không đổi dấu trên đoạn [a; b]. Hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được gọi là hình thang cong.

                                      Bài 2 : Tích phân (ảnh 1)

- Ta xét bài toán tìm diện tích hình thang cong bất kì:

Cho hình thang cong giới hạn bởi các đường thẳng x = a;  x = b (a < b); trục hoành và đường cong y = f(x),  trong đó f(x) là hàm số liên tục, không âm trên đoạn [a; b].

Với mỗi x[a;b], kí hiệu S(x) là diện tích của phần hình thang cong đó nằm giữa hai đường thẳng vuông góc với Ox lần lượt tại a và b.

Bài 2 : Tích phân (ảnh 1)

 Ta chứng minh được S(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Giả sử F(x) cũng là một nguyên hàm của f(x) thì có một hằng số C sao cho S(x) = F(x) +  C.

Vì S(a) = 0 nên F(a) +  C = 0  hay C =    F(a).

Vậy S(x) = F(x) – F(a).

Thay x = b vào đẳng thức trên, ta có diện tích của hình thang cần tìm là:

S(b) = F(b) – F(a).

2. Định nghĩa tích phân

Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b]) của hàm số f(x), kí hiệu abf(x)𝑑x.

Ta còn dùng kí hiệu F(x)|ab để chỉ hiệu số F(b) – F(a).

Vậy abf(x)𝑑x=F(x)|ab=F(b)-F(a).

Ta gọi ablà dấu tích phân, a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.

 

- Chú ý.

Trong trường hợp a = b hoặc a > b, ta quy ước:

aaf(x)𝑑x=0;abf(x)𝑑x=-baf(x)𝑑x.

Ví dụ 1.

a) 02(x+2)𝑑x=(x22+  2x)|02= 6-0=6;

b) 0π2(2+cosx)𝑑x=(2x+sinx)|0π2=(π +1)-0=π+ 1.                           

- Nhận xét.

a) Tích phân của hàm số f từ a đến b có thể kí hiệu là abf(x)𝑑x hay abf(t)𝑑t. Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào biến x hay t.

b) Ý nghĩa hình học của tích phân.

Nếu hàm số f(x) liên tục và không âm trên đoạn [a; b] thì tích phân abf(x)𝑑x là diện tích S của hình thang cong giới hạn bởi đồ thị của f(x), trục Ox và hai đường thẳng x = a; x = b. Vậy S=abf(x)𝑑x.

II. Tính chất của tích phân.

- Tính chất 1:

abk.f(x)dx=k.abf(x)𝑑x  (k là hằng số).

- Tính chất 2:

ab[f(x)±g(x)]𝑑x=abf(x)𝑑x±abg(x)𝑑x.

Ví dụ 2.  Tính: 0π(3x- 4sinx)𝑑x.

Lời giải:

Ta có:

  0π(3x- 4sinx)𝑑x=  30π x𝑑x- 40πsinxdx=  3.x22|0π+4cosx|0π=3π22+(-4-4)=3π22-  8

- Tính chất 3.

abf(x)𝑑x=acf(x)𝑑x+cbf(x)𝑑x      (a < c < b).

Ví dụ 3. Tính -22|x|𝑑x.

Lời giải:

Ta có: |x|={-x khi-2x0x khi  0x2

Do đó; -22|x|𝑑x=-20|x|𝑑x+02|x|𝑑x

=--20x𝑑x+02x𝑑x=-x22|-20+x22|02=(0+ 2)+(2-0)=4

III. Phương pháp tính tích phân

1. Phương pháp đổi biến số

- Định lí:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Giả sử hàm số x=φ(t) có đạo hàm liên tục trên đoạn [α;β] sao cho φ(α)=a;φ(β)=b.

Khi đó: abf(x)𝑑x=αβ f(φ(t)).φ'(t)dt.

Ví dụ 4.  Tính 011-x2𝑑x.

Lời giải:

Đặt x = sint; suy ra: dx = costdt.

Đổi cận:

x= 0t=  0x= 1t=π2

Ta có:

 011-x2𝑑x=0π21-sin2t.costdt=0π2cos2t.cost.dt=0π2cost.cost.dt

=0π2cos2tdt=0π212(1+cos2t)𝑑t

=12.(t+sin2t2)|0π2=π4- 0=π4.

 

- Chú ý:

Trong nhiều trường hợp ta còn sử dụng phép đổi biến số ở dạng sau:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Để tính abf(x)𝑑x, đôi khi ta chọn hàm số u = u(x) làm biến số mới, trong đó trên đoạn [a; b], u(x) có đạo hàm liên tục và u(x)[α;β].

Giả sử có thể viết: f(x) = g(u(x)). u’(x) với x[a;b] với g(u) liên tục trên đoạn [α;β].

Khi đó, ta có: abf(x)𝑑x=u(a)u(b)g(u)𝑑u.

 Ví dụ 5. Tính 0π x.sinx2dx.

Lời giải:

Đặt t = x2. Suy ra: dt = 2xdx xdx=dt2

Đổi cận:

x

0

π 

t

0

π

 

Ta có:

  0πx.sinx2dx=0πsint.dt2

=120πsint.dt=12(-cost)|0π=12-(-12)=1.

2. Phương pháp tính tích phân từng phần

- Định lí.

Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:

abu(x).v'(x)dx=[u(x).v(x)]|ab-abv(x).u'(x)dx

Hay abu𝑑v=uv|ab-abv𝑑u.

Ví dụ 6. Tính I=0π2xsinxdx.

Lời giải:

Đặt {u=xdv=sinxdx

Do đó  I=0π2xsinxdx =(-xcosx)|0π2+0π2cosxdx =0+sinx|0π2=1.

Ví dụ 7. Tính I=0e-1xln(x+1)𝑑x.

Lời giải:

Đặt {u=ln(x+1)dv=xdx ta có {du=1x+1dx =x2-12

I=0e-1xln(x+1)dx =[ln(x+1)x2-12]|0e-1-120e-1(x-1)dx=e2-2e2-12(x22-x)|0e-1

=e2-2e2-12.e2-4e+32=e2-34.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »