Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 198

Trong các tích phân sau, tích phân nào có giá trị bằng 2?

A. 12exdx

B. 012dx

Đáp án chính xác

C. 0π2sinxdx

D. 01xdx

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị của tích phân I=02min1,x2dx

Xem đáp án » 09/02/2022 821

Câu 2:

Giá trị của tích phân 02017π1-cos2x là:

Xem đáp án » 09/02/2022 597

Câu 3:

Cho 121x2+5x+6dx=alna+bln3+cln5 với a,b,c thuộc Z. Mệnh đề nào dưới đây đúng?

Xem đáp án » 09/02/2022 365

Câu 4:

Biết I=01dxx+1+x=23a-b với a, b là các số nguyên dương. Tính T = a + b

Xem đáp án » 09/02/2022 324

Câu 5:

Biết 01x3x+1+2x+1dx=a+b39 với a. b là các số thực. tính tổng T = a + b

Xem đáp án » 09/02/2022 249

Câu 6:

Tích phân 01x(x2+3)dx bằng

Xem đáp án » 09/02/2022 242

Câu 7:

Tích phân 03x (x-1) dx có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây

Xem đáp án » 09/02/2022 234

Câu 8:

Tích phân I=12x5dx có giá trị là

Xem đáp án » 09/02/2022 234

Câu 9:

Cho tích phân 0π2cos2x1+cosxdx=aπ2+bπ+c trong đó a,b,c thuộc Z. Giá trị của A=ab+bc+ca là:

Xem đáp án » 11/02/2022 229

Câu 10:

Trong các tích phân sau, tích phân nào có giá trị khác 2?

Xem đáp án » 11/02/2022 226

Câu 11:

Tích phân 12(x+3)2dx bằng:

Xem đáp án » 09/02/2022 222

Câu 12:

Tích phân 01xdx(x+1)3 bằng:

Xem đáp án » 09/02/2022 208

Câu 13:

Tích phân 23x2-x+4x+1dx bằng:

Xem đáp án » 09/02/2022 204

Câu 14:

Tính I=02e3xdx

Xem đáp án » 11/02/2022 201

Câu 15:

Tích phân 04dx2x+1 bằng

Xem đáp án » 11/02/2022 190

LÝ THUYẾT

I. Khái niệm tích phân

1. Diện tích hình thang cong

- Cho hàm số y = f(x) liên tục, không đổi dấu trên đoạn [a; b]. Hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được gọi là hình thang cong.

                                      Bài 2 : Tích phân (ảnh 1)

- Ta xét bài toán tìm diện tích hình thang cong bất kì:

Cho hình thang cong giới hạn bởi các đường thẳng x = a;  x = b (a < b); trục hoành và đường cong y = f(x),  trong đó f(x) là hàm số liên tục, không âm trên đoạn [a; b].

Với mỗi x[a;b], kí hiệu S(x) là diện tích của phần hình thang cong đó nằm giữa hai đường thẳng vuông góc với Ox lần lượt tại a và b.

Bài 2 : Tích phân (ảnh 1)

 Ta chứng minh được S(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Giả sử F(x) cũng là một nguyên hàm của f(x) thì có một hằng số C sao cho S(x) = F(x) +  C.

Vì S(a) = 0 nên F(a) +  C = 0  hay C =    F(a).

Vậy S(x) = F(x) – F(a).

Thay x = b vào đẳng thức trên, ta có diện tích của hình thang cần tìm là:

S(b) = F(b) – F(a).

2. Định nghĩa tích phân

Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b]) của hàm số f(x), kí hiệu abf(x)𝑑x.

Ta còn dùng kí hiệu F(x)|ab để chỉ hiệu số F(b) – F(a).

Vậy abf(x)𝑑x=F(x)|ab=F(b)-F(a).

Ta gọi ablà dấu tích phân, a là cận dưới, b là cận trên, f(x)dx là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.

 

- Chú ý.

Trong trường hợp a = b hoặc a > b, ta quy ước:

aaf(x)𝑑x=0;abf(x)𝑑x=-baf(x)𝑑x.

Ví dụ 1.

a) 02(x+2)𝑑x=(x22+  2x)|02= 6-0=6;

b) 0π2(2+cosx)𝑑x=(2x+sinx)|0π2=(π +1)-0=π+ 1.                           

- Nhận xét.

a) Tích phân của hàm số f từ a đến b có thể kí hiệu là abf(x)𝑑x hay abf(t)𝑑t. Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào biến x hay t.

b) Ý nghĩa hình học của tích phân.

Nếu hàm số f(x) liên tục và không âm trên đoạn [a; b] thì tích phân abf(x)𝑑x là diện tích S của hình thang cong giới hạn bởi đồ thị của f(x), trục Ox và hai đường thẳng x = a; x = b. Vậy S=abf(x)𝑑x.

II. Tính chất của tích phân.

- Tính chất 1:

abk.f(x)dx=k.abf(x)𝑑x  (k là hằng số).

- Tính chất 2:

ab[f(x)±g(x)]𝑑x=abf(x)𝑑x±abg(x)𝑑x.

Ví dụ 2.  Tính: 0π(3x- 4sinx)𝑑x.

Lời giải:

Ta có:

  0π(3x- 4sinx)𝑑x=  30π x𝑑x- 40πsinxdx=  3.x22|0π+4cosx|0π=3π22+(-4-4)=3π22-  8

- Tính chất 3.

abf(x)𝑑x=acf(x)𝑑x+cbf(x)𝑑x      (a < c < b).

Ví dụ 3. Tính -22|x|𝑑x.

Lời giải:

Ta có: |x|={-x khi-2x0x khi  0x2

Do đó; -22|x|𝑑x=-20|x|𝑑x+02|x|𝑑x

=--20x𝑑x+02x𝑑x=-x22|-20+x22|02=(0+ 2)+(2-0)=4

III. Phương pháp tính tích phân

1. Phương pháp đổi biến số

- Định lí:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Giả sử hàm số x=φ(t) có đạo hàm liên tục trên đoạn [α;β] sao cho φ(α)=a;φ(β)=b.

Khi đó: abf(x)𝑑x=αβ f(φ(t)).φ'(t)dt.

Ví dụ 4.  Tính 011-x2𝑑x.

Lời giải:

Đặt x = sint; suy ra: dx = costdt.

Đổi cận:

x= 0t=  0x= 1t=π2

Ta có:

 011-x2𝑑x=0π21-sin2t.costdt=0π2cos2t.cost.dt=0π2cost.cost.dt

=0π2cos2tdt=0π212(1+cos2t)𝑑t

=12.(t+sin2t2)|0π2=π4- 0=π4.

 

- Chú ý:

Trong nhiều trường hợp ta còn sử dụng phép đổi biến số ở dạng sau:

Cho hàm số f(x) liên tục trên đoạn [a; b]. Để tính abf(x)𝑑x, đôi khi ta chọn hàm số u = u(x) làm biến số mới, trong đó trên đoạn [a; b], u(x) có đạo hàm liên tục và u(x)[α;β].

Giả sử có thể viết: f(x) = g(u(x)). u’(x) với x[a;b] với g(u) liên tục trên đoạn [α;β].

Khi đó, ta có: abf(x)𝑑x=u(a)u(b)g(u)𝑑u.

 Ví dụ 5. Tính 0π x.sinx2dx.

Lời giải:

Đặt t = x2. Suy ra: dt = 2xdx xdx=dt2

Đổi cận:

x

0

π 

t

0

π

 

Ta có:

  0πx.sinx2dx=0πsint.dt2

=120πsint.dt=12(-cost)|0π=12-(-12)=1.

2. Phương pháp tính tích phân từng phần

- Định lí.

Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:

abu(x).v'(x)dx=[u(x).v(x)]|ab-abv(x).u'(x)dx

Hay abu𝑑v=uv|ab-abv𝑑u.

Ví dụ 6. Tính I=0π2xsinxdx.

Lời giải:

Đặt {u=xdv=sinxdx

Do đó  I=0π2xsinxdx =(-xcosx)|0π2+0π2cosxdx =0+sinx|0π2=1.

Ví dụ 7. Tính I=0e-1xln(x+1)𝑑x.

Lời giải:

Đặt {u=ln(x+1)dv=xdx ta có {du=1x+1dx =x2-12

I=0e-1xln(x+1)dx =[ln(x+1)x2-12]|0e-1-120e-1(x-1)dx=e2-2e2-12(x22-x)|0e-1

=e2-2e2-12.e2-4e+32=e2-34.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »