IMG-LOGO

Câu hỏi:

19/07/2024 246

Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) có nhiều hơn một điểm chung với mặt cầu (S) nếu:

A. h ≤ R

B. h ≥ R

C. h > R

D. h < R

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Từ vị trí tương đối của một mặt phẳng với mặt cầu ta có đáp án đúng là D.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy và SA = a. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC.

Xem đáp án » 26/02/2022 3,230

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2AD = 2a. SA vuông góc với đáy, góc giữa cạnh bên SB và đáy là 45o. Bán kính mặt cầu tâm A cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a là:

Xem đáp án » 26/02/2022 1,456

Câu 3:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

Xem đáp án » 26/02/2022 1,250

Câu 4:

Cho tam giác ABC vuông tại A có BC = 2a và B^ = 30°. Quay tam giác vuông này quanh trục AB, ta được một hình nón đỉnh B. Gọi S1 là diện tích toàn phần của hình nón đó và  là diện tích mặt cầu có đường kính AB. Khi đó, tỉ số S1S2 là:

Xem đáp án » 26/02/2022 1,189

Câu 5:

Cho đường tròn (C) ngoại tiếp một tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH, ta được một mặt cầu. Thể tích của khối cầu tương ứng là:

Xem đáp án » 26/02/2022 830

Câu 6:

Cho mặt cầu (S) tâm O bán kính R và một đường thẳng d. Kí hiệu h là khoảng cách từ O đến đường thẳng d. Đường thẳng d có điểm chung với mặt cầu (S) nếu và chỉ nếu:

Xem đáp án » 26/02/2022 819

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 2AD = 2a, SA vuông góc với đáy, SA = a. Bán kính mặt cầu ngoại tiếp hình chóp là:

Xem đáp án » 26/02/2022 550

Câu 8:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) theo a là:

Xem đáp án » 26/02/2022 493

Câu 9:

Cho hình chóp tam giác đều S.ABC có SA tạo với đáy một góc bằng 30o và SA=2a. Trong các điểm S, B, C điểm nào nằm trong mặt cầu tâm A bán kính 3a.

Xem đáp án » 26/02/2022 487

Câu 10:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Bán kính mặt cầu ngoại tiếp hình lập phương là:

Xem đáp án » 26/02/2022 460

Câu 11:

Cho mặt cầu tâm O bán kính R và điểm A bất kì trong không gian. Điểm A không nằm ngoài mặt cầu khi và chỉ khi:

Xem đáp án » 26/02/2022 388

Câu 12:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 26/02/2022 366

Câu 13:

Trong không gian cho đường thẳng Δ và điểm O cách Δ một khoảng bằng 20cm. Mặt cầu (S) tâm O cắt đường thẳng Δ theo một dây có độ dài 30cm có bán kính r bằng:

Xem đáp án » 26/02/2022 330

Câu 14:

Cho hình chóp tứ giác đều S.ABCD có góc giữa SA và đáy là 60o, SA = 2a. Bán kính mặt cầu ngoại tiếp hình chóp là:

Xem đáp án » 26/02/2022 320

Câu 15:

Tính bán kính của mặt cầu ngoại tiếp hình chóp tam giác đều S,ABC, biết các cạnh đáy có độ dài bằng a , cạnh bên SA = a33.

Xem đáp án » 26/02/2022 314

LÝ THUYẾT

I. Mặt cầu và các khái niệm liên quan đến mặt cầu.

1. Mặt cầu

- Tập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r > 0) được gọi là mặt cầu tâm O, bán kính r.

Bài 2 : Mặt cầu (ảnh 1)

Ta kí hiệu mặt cầu tâm O, bán kính r là S(O; r) hay viết tắt là (S). Như vậy ta có mặt cầu S(O; r) = {M| OM = r}.

- Nếu hai điểm C; D nằm trên mặt cầu S(O; r) thì đoạn thẳng CD được gọi là dây cung của mặt cầu đó.

- Dây cung AB đi qua tâm O được gọi là một đường kính của mặt cầu. Khi đó, độ dài đường kính bằng 2r.

Bài 2 : Mặt cầu (ảnh 1)

- Một mặt cầu được xác định nếu biết tâm và bán kính của nó hoặc biết một đường kính của mặt cầu đó.

Ví dụ 1. Cho tứ diện ABCD có O là trung điểm của đoạn thẳng nối trung điểm của hai cạnh đối diện. Tìm tập hợp các điểm M trong không gian thỏa mãn hệ thức |MA +MB +MC +MD|=a (với a > 0 không đổi).

Lời giải:

Bài 2 : Mặt cầu (ảnh 1)

Gọi E; F lần lượt là trung điểm của các cạnh AB và CD.

Suy ra O là trung điểm của EF.

Ta có: MA +MB +MC +MD =2ME+2MF =4MO.

|MA +MB +MC +MD|=4|MO|=a.

|MO|=MO=a4.

Vậy tập hợp các điểm M cần tìm trong không gian là mặt cầu tâm O bán kính r=a4.

2. Điểm nằm trong và nằm ngoài mặt cầu. Khối cầu.

Cho mặt cầu tâm O bán kính r và A là một điểm bất kì trong không gian.

- Nếu OA = r thì ta nói điểm A nằm trên mặt cầu S(O; r).

- Nếu OA < r thì ta nói điểm A nằm trong mặt cầu S(O; r).

- Nếu OA > r thì ta nói điểm A nằm ngoài mặt cầu S(O; r).

Tập hợp các điểm thuộc mặt cầu S(O; r) cùng với các điểm nằm trong mặt cầu đó được gọi là khối cầu hoặc hình cầu tâm O, bán kính r.

3. Biểu diễn mặt cầu.

- Ta thường dùng phép chiếu vuông góc lên mặt phẳng để biểu diễn mặt cầu. Khi đó, hình biểu diễn của mặt cầu là một hình tròn.

- Muốn cho hình biểu diễn của mặt cầu được trực quan ta thường vẽ thêm hình biểu diễn của một số đường tròn nằm trên mặt cầu đó.

Bài 2 : Mặt cầu (ảnh 1)

4. Đường kinh tuyến và vĩ tuyến của mặt cầu.

Ta có thể xem mặt  cầu như là mặt tròn xoay được tạo nên bởi một nửa đường tròn quay quanh trục chứa đường kính của nửa đường tròn đó. Khi đó, giao tuyến của mặt cầu với các nửa mặt phẳng có bờ là trục của mặt cầu được gọi là kinh tuyến của mặt cầu, giao tuyến (nếu có) của mặt cầu với các mặt phẳng vuông góc với trục được gọi là vĩ tuyến của mặt cầu. Hai giao điểm của mặt cầu với trục được gọi là hai cực của mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

II. Giao của mặt cầu và mặt phẳng

Cho mặt cầu S(O; r) và mặt phẳng (P). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (P). Khi đó h = OH là khoảng cách từ O tới mặt phẳng (P). Ta có ba trường hợp sau:

1. Trường hợp h > r.

Nếu M là một điểm bất kì trên mặt phẳng (P) thì OM ≥ OH. Từ đó suy ra OM > r.

Vậy mọi điểm M thuộc mặt phẳng (P) đều nằm ngoài mặt cầu.

Do đó, mặt phẳng (P) không có điểm chung với mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

2. Trường hợp h = r.

- Trong trường hợp này điểm H thuộc mặt cầu S (O; r). Khi đí, với mọi điểm M thuộc mp(P) nhưng khác với H ta luôn có:

OM > OH = r nên OM > r.

Như vậy, H là điểm chung duy nhất của mặt cầu S(O; r) và mặt phẳng (P). Khi đó ta nói mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại H.

Bài 2 : Mặt cầu (ảnh 1)

- Điểm H gọi là tiếp điểm của mặt cầu S(O; r) và mặt phẳng (P), mp(P) gọi là mặt phẳng tiếp xúc hay tiếp diện của mặt cầu. Vậy ta có:

- Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.

3. Trường hợp h < r.

- Trong trường hợp này mặt phẳng cắt mặt cầu theo đường tròn tâm H; bán kính r'=r2-h2.

Bài 2 : Mặt cầu (ảnh 1)

- Đặc biệt khi h = 0 thì tâm O của mặt cầu thuộc mặt phẳng (P). Ta có giao tuyến của mặt phẳng (P) và mặt cầu S(O; r) là đường tròn tâm O bán kính r. Đường tròn này gọi là đường tròn lớn.

Bài 2 : Mặt cầu (ảnh 1)

Mặt phẳng đi qua tâm O của mặt cầu được gọi là mặt phẳng kính của mặt cầu đó.

III. Giao của mặt cầu với đường thẳng.Tiếp tuyến của mặt cầu.

Cho mặt cầu S(O; r) và đường thẳng ∆.

Gọi H là hình chiếu vuông góc của tâm O trên ∆ và d = OH là khoảng cách từ O đến ∆.

1. Nếu d > r thì ∆ không cắt mặt cầu S(O; r), vì với mọi điểm M thuộc ∆ ta đều có OM > r và như vậy mọi điểm M thuộc ∆ đều nằm ngoài mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

2. Nếu d = r thì mọi điểm H thuộc mặt cầu S(O; r). Khi đó, với mọi điểm M thuộc ∆ nhưng khác H ta luôn có: OM > OH = r nên OM > r.

- Như vậy H là điểm chung duy nhất của mặt cầu S(O; r) và đường thẳng ∆. Khi đó, ta nói đường thẳng ∆ tiếp xúc với mặt cầu S(O; r) tại H.

Điểm H gọi là tiếp điểm của ∆ và mặt cầu. Đường thẳng ∆ gọi là tiếp tuyến của mặt cầu.

- Vậy: Điều kiện cần và đủ để đường thẳng ∆ tiếp xúc với mặt cầu S(O; r) tại điểm H là ∆ vuông góc với bán kính OH tại điểm H.

Bài 2 : Mặt cầu (ảnh 1)

3. Nếu d < r thì đường thẳng ∆ cắt mặt cầu S(O; r) tại hai điểm M; N phân biệt. Hai điểm đó chính là giao điểm của đường thẳng ∆ với đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (O; ∆).

Bài 2 : Mặt cầu (ảnh 1)

- Đặc biệt, khi d = 0 thì đường thẳng ∆ đi qua tâm O và căt mặt cầu tại hai điểm A; B. Khi đó, AB là đường kính của mặt cầu.

- Nhận xét:

a) Qua một điểm A nằm ngoài mặt cầu S(O; r) có vô số tiếp tuyến của mặt cầu đó. Tất cả các tiếp tuyến này đều vuông góc với bán kính OA của mặt  cầu tại A và đều nằm trên mặt phẳng tiếp xúc với mặt cầu tại điểm A.

Bài 2 : Mặt cầu (ảnh 1)

b) Qua một điểm A nằm ngoài mặt cầu S(O; r) có vô số tiếp tuyến với mặt cầu đã cho. Các tiếp tuyến này tạo thành một mặt nón đỉnh A. Khi đó độ dài các đoạn thẳng kẻ từ A đến các tiếp điểm đều bằng nhau.

Bài 2 : Mặt cầu (ảnh 1)

- Chú ý: Người ta nói mặt cầu nội tiếp hình đa diện nếu mặt cầu đó tiếp xúc với tất cả các mặt của hình đa diện, còn nói mặt cầu ngoại tiếp hình đa diện nếu tất cả các đỉnh của hình đa diện đều nằm trên mặt cầu.

Khi mặt cầu nội tiếp (ngoại tiếp) hình đa diện, người ta cũng nói hình đa diện ngoại tiếp (nội tiếp) mặt cầu.

IV. Công thức tính diện tích mặt cầu và thể tích khối cầu.

- Mặt cầu bán kính r có diện tích là: S=  4πr2.

- Khối cầu bán kính r có thể tích là:V=43πr3.

- Chú ý:

a) Diện tích S của mặt cầu bán kính r bằng bốn lần diện tích hình tròn lớn của mặt cầu đó.

b) Thể tích V của khối cầu bán kính r bằng thể tích khối chóp có diện tích đáy bằng diện tích mặt cầu và có chiều cao bằng bán kính của khối cầu đó.

- Ví dụ 2. Cho hình tròn đường kính 4a quay quanh đường kính của nó. Khi đó thể tích khối tròn xoay sinh ra bằng bao nhiêu?

Lời giải:

Cho hình tròn đường kính 4a quay quanh đường kính của nó ta được khối cầu có đường kính 4a hay bán kính R = 2a.

Thể tích khối cầu là: V=43πR3=43π(2a)3=323πa3.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »