Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

19/07/2024 274

Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2; 2; 1. Tính bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.

A. R = 3

B. R=32

Đáp án chính xác

C. R=92

D. R = 9

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Áp dụng công thức ta có 

Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2; 2; 1. Tính bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên. (ảnh 1)

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Các tiếp tuyến tại cùng một điểm nằm trên mặt cầu có tính chất:

Xem đáp án » 27/02/2022 1,654

Câu 2:

Cho mặt cầu (S) và điểm A nằm ngoài mặt cầu, các điểm B, C, D, E lần lượt là các tiếp điểm của các tiếp tuyến kẻ từ A đến mặt cầu. Chọn mệnh đề đúng:

Xem đáp án » 27/02/2022 427

Câu 3:

Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA=a,SB=2a,SC=3a. Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là:

Xem đáp án » 27/02/2022 335

Câu 4:

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a,AD=2a,AA'=3a. Thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’ là:

Xem đáp án » 27/02/2022 320

Câu 5:

Cho mặt cầu (S) cố định và điểm A di chuyển trong không gian, vị trí của A để tập hợp các tiếp điểm của tiếp tuyến với mặt cầu kẻ từ A là đường tròn lớn là:

Xem đáp án » 27/02/2022 297

Câu 6:

Cho hình chóp tam giác S.ABC có SAC^=SBC^=90°. Khi đó tâm mặt cầu ngoại tiếp hình chóp nằm trên đường thẳng nào?

Xem đáp án » 27/02/2022 285

Câu 7:

Cho mặt cầu (S) và điểm A∈(S), (P) là tiếp diện của (S) tại A. Chọn mệnh đề sai:

Xem đáp án » 27/02/2022 271

Câu 8:

Cho một mặt cầu bán kính bằng 2. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?

Xem đáp án » 27/02/2022 255

Câu 9:

Hình chóp S.ABC có đáy ABC là tam giác vuông tại A có SA vuông góc với mặt phẳng (ABC) và có SA=a,AB=b,AC=c. Mặt cầu đi qua các đỉnh A, B, C, S có bán kính R bằng:

Xem đáp án » 27/02/2022 253

Câu 10:

Chọn mệnh đề đúng:

Xem đáp án » 27/02/2022 249

Câu 11:

Cho mặt cầu (S). Nếu (P) là mặt phẳng kính của mặt cầu (S) thì:

Xem đáp án » 27/02/2022 248

Câu 12:

Cho mặt cầu S(I;R) và mặt phẳng (P) cách l một khoảng bằng R2R2. Khi đó giao của (P) và (S) là đường tròn có chu vi bằng:

Xem đáp án » 27/02/2022 243

Câu 13:

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên b. Công thức tính bán kính mặt cầu ngoại tiếp khối chóp là:

Xem đáp án » 27/02/2022 228

Câu 14:

Cho mặt cầu (S) có đường kính 10 cm và mặt phẳng (P) cách tâm mặt cầu một khoảng 4 cm. Khẳng định nào sau đây sai?

Xem đáp án » 27/02/2022 225

LÝ THUYẾT

I. Mặt cầu và các khái niệm liên quan đến mặt cầu.

1. Mặt cầu

- Tập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r > 0) được gọi là mặt cầu tâm O, bán kính r.

Bài 2 : Mặt cầu (ảnh 1)

Ta kí hiệu mặt cầu tâm O, bán kính r là S(O; r) hay viết tắt là (S). Như vậy ta có mặt cầu S(O; r) = {M| OM = r}.

- Nếu hai điểm C; D nằm trên mặt cầu S(O; r) thì đoạn thẳng CD được gọi là dây cung của mặt cầu đó.

- Dây cung AB đi qua tâm O được gọi là một đường kính của mặt cầu. Khi đó, độ dài đường kính bằng 2r.

Bài 2 : Mặt cầu (ảnh 1)

- Một mặt cầu được xác định nếu biết tâm và bán kính của nó hoặc biết một đường kính của mặt cầu đó.

Ví dụ 1. Cho tứ diện ABCD có O là trung điểm của đoạn thẳng nối trung điểm của hai cạnh đối diện. Tìm tập hợp các điểm M trong không gian thỏa mãn hệ thức |MA +MB +MC +MD|=a (với a > 0 không đổi).

Lời giải:

Bài 2 : Mặt cầu (ảnh 1)

Gọi E; F lần lượt là trung điểm của các cạnh AB và CD.

Suy ra O là trung điểm của EF.

Ta có: MA +MB +MC +MD =2ME+2MF =4MO.

|MA +MB +MC +MD|=4|MO|=a.

|MO|=MO=a4.

Vậy tập hợp các điểm M cần tìm trong không gian là mặt cầu tâm O bán kính r=a4.

2. Điểm nằm trong và nằm ngoài mặt cầu. Khối cầu.

Cho mặt cầu tâm O bán kính r và A là một điểm bất kì trong không gian.

- Nếu OA = r thì ta nói điểm A nằm trên mặt cầu S(O; r).

- Nếu OA < r thì ta nói điểm A nằm trong mặt cầu S(O; r).

- Nếu OA > r thì ta nói điểm A nằm ngoài mặt cầu S(O; r).

Tập hợp các điểm thuộc mặt cầu S(O; r) cùng với các điểm nằm trong mặt cầu đó được gọi là khối cầu hoặc hình cầu tâm O, bán kính r.

3. Biểu diễn mặt cầu.

- Ta thường dùng phép chiếu vuông góc lên mặt phẳng để biểu diễn mặt cầu. Khi đó, hình biểu diễn của mặt cầu là một hình tròn.

- Muốn cho hình biểu diễn của mặt cầu được trực quan ta thường vẽ thêm hình biểu diễn của một số đường tròn nằm trên mặt cầu đó.

Bài 2 : Mặt cầu (ảnh 1)

4. Đường kinh tuyến và vĩ tuyến của mặt cầu.

Ta có thể xem mặt  cầu như là mặt tròn xoay được tạo nên bởi một nửa đường tròn quay quanh trục chứa đường kính của nửa đường tròn đó. Khi đó, giao tuyến của mặt cầu với các nửa mặt phẳng có bờ là trục của mặt cầu được gọi là kinh tuyến của mặt cầu, giao tuyến (nếu có) của mặt cầu với các mặt phẳng vuông góc với trục được gọi là vĩ tuyến của mặt cầu. Hai giao điểm của mặt cầu với trục được gọi là hai cực của mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

II. Giao của mặt cầu và mặt phẳng

Cho mặt cầu S(O; r) và mặt phẳng (P). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (P). Khi đó h = OH là khoảng cách từ O tới mặt phẳng (P). Ta có ba trường hợp sau:

1. Trường hợp h > r.

Nếu M là một điểm bất kì trên mặt phẳng (P) thì OM ≥ OH. Từ đó suy ra OM > r.

Vậy mọi điểm M thuộc mặt phẳng (P) đều nằm ngoài mặt cầu.

Do đó, mặt phẳng (P) không có điểm chung với mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

2. Trường hợp h = r.

- Trong trường hợp này điểm H thuộc mặt cầu S (O; r). Khi đí, với mọi điểm M thuộc mp(P) nhưng khác với H ta luôn có:

OM > OH = r nên OM > r.

Như vậy, H là điểm chung duy nhất của mặt cầu S(O; r) và mặt phẳng (P). Khi đó ta nói mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại H.

Bài 2 : Mặt cầu (ảnh 1)

- Điểm H gọi là tiếp điểm của mặt cầu S(O; r) và mặt phẳng (P), mp(P) gọi là mặt phẳng tiếp xúc hay tiếp diện của mặt cầu. Vậy ta có:

- Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.

3. Trường hợp h < r.

- Trong trường hợp này mặt phẳng cắt mặt cầu theo đường tròn tâm H; bán kính r'=r2-h2.

Bài 2 : Mặt cầu (ảnh 1)

- Đặc biệt khi h = 0 thì tâm O của mặt cầu thuộc mặt phẳng (P). Ta có giao tuyến của mặt phẳng (P) và mặt cầu S(O; r) là đường tròn tâm O bán kính r. Đường tròn này gọi là đường tròn lớn.

Bài 2 : Mặt cầu (ảnh 1)

Mặt phẳng đi qua tâm O của mặt cầu được gọi là mặt phẳng kính của mặt cầu đó.

III. Giao của mặt cầu với đường thẳng.Tiếp tuyến của mặt cầu.

Cho mặt cầu S(O; r) và đường thẳng ∆.

Gọi H là hình chiếu vuông góc của tâm O trên ∆ và d = OH là khoảng cách từ O đến ∆.

1. Nếu d > r thì ∆ không cắt mặt cầu S(O; r), vì với mọi điểm M thuộc ∆ ta đều có OM > r và như vậy mọi điểm M thuộc ∆ đều nằm ngoài mặt cầu.

Bài 2 : Mặt cầu (ảnh 1)

2. Nếu d = r thì mọi điểm H thuộc mặt cầu S(O; r). Khi đó, với mọi điểm M thuộc ∆ nhưng khác H ta luôn có: OM > OH = r nên OM > r.

- Như vậy H là điểm chung duy nhất của mặt cầu S(O; r) và đường thẳng ∆. Khi đó, ta nói đường thẳng ∆ tiếp xúc với mặt cầu S(O; r) tại H.

Điểm H gọi là tiếp điểm của ∆ và mặt cầu. Đường thẳng ∆ gọi là tiếp tuyến của mặt cầu.

- Vậy: Điều kiện cần và đủ để đường thẳng ∆ tiếp xúc với mặt cầu S(O; r) tại điểm H là ∆ vuông góc với bán kính OH tại điểm H.

Bài 2 : Mặt cầu (ảnh 1)

3. Nếu d < r thì đường thẳng ∆ cắt mặt cầu S(O; r) tại hai điểm M; N phân biệt. Hai điểm đó chính là giao điểm của đường thẳng ∆ với đường tròn giao tuyến của mặt cầu S(O; r) và mặt phẳng (O; ∆).

Bài 2 : Mặt cầu (ảnh 1)

- Đặc biệt, khi d = 0 thì đường thẳng ∆ đi qua tâm O và căt mặt cầu tại hai điểm A; B. Khi đó, AB là đường kính của mặt cầu.

- Nhận xét:

a) Qua một điểm A nằm ngoài mặt cầu S(O; r) có vô số tiếp tuyến của mặt cầu đó. Tất cả các tiếp tuyến này đều vuông góc với bán kính OA của mặt  cầu tại A và đều nằm trên mặt phẳng tiếp xúc với mặt cầu tại điểm A.

Bài 2 : Mặt cầu (ảnh 1)

b) Qua một điểm A nằm ngoài mặt cầu S(O; r) có vô số tiếp tuyến với mặt cầu đã cho. Các tiếp tuyến này tạo thành một mặt nón đỉnh A. Khi đó độ dài các đoạn thẳng kẻ từ A đến các tiếp điểm đều bằng nhau.

Bài 2 : Mặt cầu (ảnh 1)

- Chú ý: Người ta nói mặt cầu nội tiếp hình đa diện nếu mặt cầu đó tiếp xúc với tất cả các mặt của hình đa diện, còn nói mặt cầu ngoại tiếp hình đa diện nếu tất cả các đỉnh của hình đa diện đều nằm trên mặt cầu.

Khi mặt cầu nội tiếp (ngoại tiếp) hình đa diện, người ta cũng nói hình đa diện ngoại tiếp (nội tiếp) mặt cầu.

IV. Công thức tính diện tích mặt cầu và thể tích khối cầu.

- Mặt cầu bán kính r có diện tích là: S=  4πr2.

- Khối cầu bán kính r có thể tích là:V=43πr3.

- Chú ý:

a) Diện tích S của mặt cầu bán kính r bằng bốn lần diện tích hình tròn lớn của mặt cầu đó.

b) Thể tích V của khối cầu bán kính r bằng thể tích khối chóp có diện tích đáy bằng diện tích mặt cầu và có chiều cao bằng bán kính của khối cầu đó.

- Ví dụ 2. Cho hình tròn đường kính 4a quay quanh đường kính của nó. Khi đó thể tích khối tròn xoay sinh ra bằng bao nhiêu?

Lời giải:

Cho hình tròn đường kính 4a quay quanh đường kính của nó ta được khối cầu có đường kính 4a hay bán kính R = 2a.

Thể tích khối cầu là: V=43πR3=43π(2a)3=323πa3.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »