Khi quay hình chữ nhật ABCD quanh các cạnh nào dưới đây ta được hai hình trụ có cùng chiều cao?
A. AB và AD
B. AC và AB
C. BD và AC
D. BC và AD
Quay hình chữ nhật quanh một cạnh thì ta được hình trụ nên loại đáp án C và B vì có các đường chéo.
Do nên hai hình trụ tạo thành có chiều cao khác nhau.
Do AD = BC nên hai hình trụ tạo thành có chiều cao bằng nhau.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho khối (N) có bán kính đáy bằng 3 và diện tích xung quanh bằng . Tính thể tích V của khối nón (N)
Tứ diện ABCD có và góc giữa AD, BC bằng . Khi đó, bán kính mặt cầu ngoại tiếp tứ diện là:
Cho hình trụ có chiều cao , bán kính đáy r=a. Gọi O, O’ lần lượt là tâm của hai đường tròn đáy. Trên hai đường tròn đáy lần lượt lấy hai điểm A, B sao cho hai đường thẳng AB và OO’ chéo nhau và góc giữa hai đường thẳng AB với OO’ bằng . Khoảng cách giữa hai đường thẳng AB và OO’ bằng:
Cho hình nón có bán kính đáy bằng 4a và chiều cao bằng 3a. Diện tích toàn phần của hình nón bằng
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AD=2a, AA'=2a. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABB’C’
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, , BC, đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc . Diện tích mặt cầu ngoại tiếp lăng trụ đã cho bằng:
Khi quay hình chữ nhật MNPQ quanh đường thẳng AB với A, B lần lượt là trung điểm của MN, PQ ta được một hình trụ có đường kính đáy:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, và . Thể tích khối cầu ngoại tiếp hình tứ diện AB’A’C là:
Một cái phễu có dạng hình nón có chiều cao 15 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao ban đầu của cái phễu (hình 1). Hỏi nếu bịt kín miệng phễu rồi lộn ngược phễu lên (hình 2) thì chiều cao của nước xấp xỉ bằng bao nhiêu (làm tròn đến hàng phần nghìn)
Cần đẽo thanh gỗ hình hộp có đáy là hình vuông thành hình trụ có cùng chiều cao. Tỉ lệ thể tích khối gỗ cần phải đẽo đi ít nhất (tính gần đúng) là:
Cho khối trụ có hai đáy là hình tròn (O;R) và (O';R), OO'=4R. Trên đường tròn tâm O lấy hai điểm A, B sao cho . Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng:
Một hình hộp chữ nhật có độ dài 3 cạnh lần lượt là 2, 2, 1. Tính bán kính R mặt cầu ngoại tiếp hình hộp nói trên.
Một cái phễu có dạng hình nón. Chiều cao của phễu là 20 cm. người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 10 cm. Nếu bịt kín miệng phễu rồi lật ngược phễu lên thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?
Một hộp đựng phấn hình hộp chữ nhật có chiều dài 30 cm, chiều rộng 5 cm và chiều cao 6 cm. Người ta xếp thẳng đứng vào đó các viên phấn giống nhau, mỗi viên phấn là khối trụ có chiều cao h = 6 cm và bán kính đáy cm. Hỏi có thể xếp được tối đa bao nhiêu viên phấn.
Cho hình nón tròn xoay đỉnh S, đáy là hình tròn tâm O. Trên đường tròn đó lấy hai điểm A và M. Biết góc
, góc tạo bởi hai mặt phẳng (SAM) và (OAM) có số đo bằng và khoảng cách từ O đến (SAM) bằng 2. Khi đó thể tích khối nón là:
1. Sự tạo thành mặt tròn xoay.
Trong không gian cho mặt phẳng (P) chứa đường thẳng ∆ và một đường C. Khi quay mặt phẳng (P) quanh ∆ một góc 3600 thì mỗi điểm M trên đường C vạch ra một đường tròn có tâm O thuộc ∆ và nằm trên mặt phẳng vuông góc với ∆.
Như vậy, khi quay mặt phẳng (P) quanh đường thẳng ∆ thì đường C sẽ tạo thành một hình được gọi là mặt tròn xoay.
Đường C được gọi là đường sinh của mặt tròn xoay đó. Đường thẳng ∆ được gọi là trục của mặt tròn xoay đó.
2. Mặt nón tròn xoay
2.1 Định nghĩa.
Trong mặt phẳng (P) cho hai đường thẳng d và ∆ cắt nhau tại điểm O và tạo thành góc β với 00 < β < 900. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng d sinh ra một mặt tròn xoay được gọi là mặt nón tròn xoay đỉnh O.
Người thường gọi tắt mặt nón tròn xoay là mặt nón.
Đường thẳng ∆ là trục, đường thẳng d là đường sinh và góc 2β gọi là góc ở đỉnh của mặt nón đó.
2.2 Hình nón tròn xoay và khối nón tròn xoay.
a) Cho tam giác OIM vuông tại I. Khi quay tam giác đó xung quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình được gọi là hình nón tròn xoay, gọi tắt là hình nón.
Hình tròn tâm I sinh bởi các điểm thuộc cạnh IM khi quay quanh trục OI được gọi là mặt đáy của hình nón, điểm O được gọi là đỉnh của hình nón.
Độ dài đoạn OI gọi là chiều cao của hình nón, đó cũng chính là khoảng cách từ O đến mặt phẳng đáy. Độ dài đoạn OM gọi là độ dài đường sinh của hình nón.
Phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh OM khi quay quanh OI được gọi là mặt xung quanh của hình nón đó.
b) Khối nón tròn xoay là phần không gian được giới hạn bởi một hình nón tròn xoay kể cả hình nón đó. Người ra gọi tắt khối nón tròn xoay là khối nón.
Những điểm không thuộc khối nón được gọi là những điểm ngoài của khối nón. Những điểm thuộc khối nón nhưng không thuộc hình nón ứng với khối nón ấy được gọi là những điểm trong của khối nón.
Ta gọi đỉnh, mặt đáy, đường sinh của một hình nón theo thứ tự là đỉnh, mặt đáy, đường sinh của khối nón tương ứng.
2.3 Diện tích xung quanh của hình nón tròn xoay.
a) Một hình chóp được gọi là nội tiếp một hình nón nếu đáy của hình chóp là đa giác nội tiếp đường tròn đáy của hình nón và đỉnh của hình chóp là đỉnh của hình nón. Khi đó, ta còn nói hình nón ngoại tiếp hình chóp.
- Định nghĩa: Diện tích xung quanh của hình nón tròn xoay là giới hạn của diện tích xung quanh của hình chóp đều nội tiếp hình nón đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính diện tích xung quanh của hình nón.
- Diện tích xung quanh của hình nón tròn xoay bằng một nửa tích của độ dài đường tròn đáy và độ dài đường sinh.
(r là bán kính đường tròn đáy, l là độ dài đường sinh).
- Người ta gọi tổng của diện tích xung quanh và diện tích đáy là diện tích toàn phần của hình nón.
- Chú ý: Diện tích xung quanh, diện tích toàn phần của hình nón tròn xoay cũng là diện tích xung quanh , diện tích toàn phần của khối nón được giới hạn bởi hình nón đó.
- Nếu cắt mặt xung quanh của hình nón tròn xoay theo một đường sinh rồi trải dài ra trên một mặt phẳng thì ta sẽ được một hình quạt có bán kính bằng độ dài đường sinh của hình nón và một cung tròn có độ dài bằng chu vi đường tròn đáy của hình nón. Ta có thể xem diện tích hình quạt này là diện tích xung quanh của hình nón.
Ví dụ. Một hình nón tròn xoay có đường cao h = 20, bán kính đáy r = 25.
a) Tính diện tích xung quanh hình nón đã cho.
b) Tính diện tích toàn phần hình nón đã cho.
Lời giải:
a) Ta có:
(Pitago trong tam giác vuông SAO)
Diện tích xung quanh của hình nón:
.
b) Diện tích toàn phần của hình nón:
2.4 Thể tích khối nón tròn xoay.
a) Định nghĩa.
Thể tích của khối nón tròn xoay là giới hạn của thể tích khối chóp đều nội tiếp khối nón đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính thể tích khối nón tròn xoay.
Gọi V là thể tích của khối nón tròn xoay có diện tích đáy B và chiều cao h, ta có công thức:
Như vậy, nếu bán kính đáy bằng r thì , khi đó: .
Ví dụ. Trong không gian, cho tam giác ABC cân tại A, BC = 2a. Gọi H là trung điểm của BC. Tính thể tích V của hình nón nhận được khi quay tam giác ABC xung quanh trục AH.
Lời giải:
Đường sinh
Bán kính đáy
đường cao
Thể tích của hình nón tạo thành .
3. Mặt trụ tròn xoay.
3.1 Định nghĩa
Trong mặt phẳng (P) cho hai đường thẳng ∆ và l song song với nhau, cách nhau một khoảng bằng r. Khi quay mặt phẳng (P) xung quanh ∆ thì đường thẳng l sinh ra một mặt tròn xoay được gọi là mặt trụ tròn xoay.
Người ta thường gọi tắt mặt trụ tròn xoay này là mặt trụ. Đường thẳng ∆ gọi là trục, đường thẳng l là đường sinh và r là bán kính của mặt trụ đó.
3.2 Hình trụ tròn xoay và khối trụ tròn xoay.
a) Xét hình chữ nhật ABCD. Khi quay hình này xung quanh đường thẳng chứa một cạnh – giả sử là AB; thì đường gấp khúc ADCB tạo thành một hình được gọi là hình trụ tròn xoay hay còn gọi tắt là hình trụ.
- Khi quay quanh AB; hai cạnh AD và BC sẽ vạch ra hai hình tròn bằng nhau gọi là hai đáy của hình trụ, bán kính của chúng gọi là bán kính của hình trụ.
Độ dài đoạn CD gọi là độ dài đường sinh của hình trụ, phần mặt tròn xoay được sinh ra bởi các điểm trên cạnh CD khi quay quanh AB gọi là mặt xung quanh của hình trụ.
Khoảng cách AB giữa hai mặt phẳng song song chứa hai đáy gọi là chiều cao của hình trụ.
b) Khối trụ tròn xoay là phần không gian được giới hạn bởi một hình trụ tròn xoay kể cả hình trụ đó. Khối trụ tròn xoay còn được gọi tắt là khối trụ.
Những điểm không thuộc khối trụ được gọi là những điểm ngoài của khối trụ.
Những điểm thuộc khối trụ nhưng không thuộc hình trụ được gọi là những điểm trong của khối trụ.
Ta gọi mặt đáy, chiều cao, đường sinh, bán kính của một hình trụ theo thú tự là mặt đáy, chiều cao, đường sinh, bán kính của khối trụ tương ứng.
3.3 Diện tích xung quanh của hình trụ tròn xoay.
a) Một hình lăng trụ gọi là nội tiếp một hình trụ nếu hai đáy của hình lăng trụ nội tiếp hai đường tròn đáy của hình trụ. Khi đó, ta còn nói hình trụ ngoại tiếp hình lăng trụ.
- Định nghĩa: Diện tích xung quanh của hình trụ tròn xoay là giới hạn của diện tích xung quanh của hình lăng trụ đều nội tiếp hình trụ đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính diện tích xung quanh của hình trụ.
- Diện tích xung quanh của hình trụ tròn xoay bằng tích của độ dài đường tròn đáy và độ dài đường sinh:
( r là bán kính của hình trụ, l là độ dài đường sinh của hình trụ).
- Chú ý: Diện tích xung quanh, diện tích toàn phần của hình trụ tròn xoay cũng là diện tích xung quanh, diện tích toàn phần của khối trụ được giới hạn bởi hình trụ đó.
Nếu cắt mặt xung quanh của hình trụ theo một đường sinh, rồi trải ra trên một mặt phẳng thì ta sẽ được một hình chữ nhật có một cạnh bằng đường sinh l và một cạnh bằng chu vi của đường tròn đáy. Độ dài đường sinh l bằng chiều cao h của hình trụ. Khi đó, diện tích hình chữ nhật bằng diện tích xung quanh của hình trụ.
Ví dụ. Cho hình vuông ABCD cạnh 8. Gọi M; N lần lượt là trung điểm của AB
và CD. Quay hình vuông ABCD xung quanh MN.
Tính diện tích xung quanh của hình trụ tạo thành
Lời giải:
Quay hình vuông ABCD xung quanh MN ta được hình trụ như hình vẽ.
Khi đó, bán kính hình trụ:
Diện tích xung quanh của hình trụ tạo thành:
3.4 Thể tích khối trụ tròn xoay.
a) Định nghĩa: Thể tích của khối trụ tròn xoay là giới hạn của thể tích khối lăng trụ đều nội tiếp khối trụ đó khi số cạnh đáy tăng lên vô hạn.
b) Công thức tính thể tích khối trụ tròn xoay.
Gọi V là thể tích của khối trụ tròn xoay có diện tích đáy B và chiều cao h, ta có công thức: V = B.h.
Như vậy, nếu bán kính đáy bằng r thì , khi đó: .
- Ví dụ. Khối trụ có thiết diện qua trục là hình vuông cạnh a = 2 có thể tích là?
Lời giải:
Thiết diện qua trục của khối trụ là hình vuông ABCD như hình vẽ.
Hình vuông cạnh a = 2 nên AB = 2r = 2 .
Suy ra, bán kính của hình trụ là r = 1
Chiều cao hình trụ là h = AD = 2
Thể tích hình trụ: .
4. Mặt cầu và các khái niệm liên quan đến mặt cầu.
4.1 Mặt cầu
- Tập hợp những điểm M trong không gian cách điểm O cố định một khoảng không đổi bằng r (r > 0) được gọi là mặt cầu tâm O, bán kính r.
Ta kí hiệu mặt cầu tâm O, bán kính r là S(O; r) hay viết tắt là (S). Như vậy ta có mặt cầu S(O; r) = {M| OM = r}.
- Nếu hai điểm C; D nằm trên mặt cầu S(O; r) thì đoạn thẳng CD được gọi là dây cung của mặt cầu đó.
- Dây cung AB đi qua tâm O được gọi là một đường kính của mặt cầu. Khi đó, độ dài đường kính bằng 2r.
- Một mặt cầu được xác định nếu biết tâm và bán kính của nó hoặc biết một đường kính của mặt cầu đó.
Ví dụ. Cho tứ diện ABCD có O là trung điểm của đoạn thẳng nối trung điểm của hai cạnh đối diện. Tìm tập hợp các điểm M trong không gian thỏa mãn hệ thức (với a > 0 không đổi).
Lời giải:
Gọi E; F lần lượt là trung điểm của các cạnh AB và CD.
Suy ra O là trung điểm của EF.
Ta có:
.
.
Vậy tập hợp các điểm M cần tìm trong không gian là mặt cầu tâm O bán kính .
4.2 Điểm nằm trong và nằm ngoài mặt cầu. Khối cầu.
Cho mặt cầu tâm O bán kính r và A là một điểm bất kì trong không gian.
- Nếu OA = r thì ta nói điểm A nằm trên mặt cầu S(O; r).
- Nếu OA < r thì ta nói điểm A nằm trong mặt cầu S(O; r).
- Nếu OA > r thì ta nói điểm A nằm ngoài mặt cầu S(O; r).
Tập hợp các điểm thuộc mặt cầu S(O; r) cùng với các điểm nằm trong mặt cầu đó được gọi là khối cầu hoặc hình cầu tâm O, bán kính r.
4.3 Biểu diễn mặt cầu.
- Ta thường dùng phép chiếu vuông góc lên mặt phẳng để biểu diễn mặt cầu. Khi đó, hình biểu diễn của mặt cầu là một hình tròn.
- Muốn cho hình biểu diễn của mặt cầu được trực quan ta thường vẽ thêm hình biểu diễn của một số đường tròn nằm trên mặt cầu đó.
4.4 Đường kinh tuyến và vĩ tuyến của mặt cầu.
Ta có thể xem mặt cầu như là mặt tròn xoay được tạo nên bởi một nửa đường tròn quay quanh trục chứa đường kính của nửa đường tròn đó. Khi đó, giao tuyến của mặt cầu với các nửa mặt phẳng có bờ là trục của mặt cầu được gọi là kinh tuyến của mặt cầu, giao tuyến (nếu có) của mặt cầu với các mặt phẳng vuông góc với trục được gọi là vĩ tuyến của mặt cầu. Hai giao điểm của mặt cầu với trục được gọi là hai cực của mặt cầu.
5. Giao của mặt cầu và mặt phẳng
Cho mặt cầu S(O; r) và mặt phẳng (P). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (P). Khi đó h = OH là khoảng cách từ O tới mặt phẳng (P). Ta có ba trường hợp sau:
5.1 Trường hợp h > r.
Nếu M là một điểm bất kì trên mặt phẳng (P) thì OM ≥ OH. Từ đó suy ra OM > r.
Vậy mọi điểm M thuộc mặt phẳng (P) đều nằm ngoài mặt cầu.
Do đó, mặt phẳng (P) không có điểm chung với mặt cầu.
5.2 Trường hợp h = r.
- Trong trường hợp này điểm H thuộc mặt cầu S (O; r). Khi đí, với mọi điểm M thuộc mp(P) nhưng khác với H ta luôn có:
OM > OH = r nên OM > r.
Như vậy, H là điểm chung duy nhất của mặt cầu S(O; r) và mặt phẳng (P). Khi đó ta nói mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại H.
- Điểm H gọi là tiếp điểm của mặt cầu S(O; r) và mặt phẳng (P), mp(P) gọi là mặt phẳng tiếp xúc hay tiếp diện của mặt cầu. Vậy ta có:
- Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O; r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.
5.3 Trường hợp h < r.
- Trong trường hợp này mặt phẳng cắt mặt cầu theo đường tròn tâm H; bán kính .
- Đặc biệt khi h = 0 thì tâm O của mặt cầu thuộc mặt phẳng (P). Ta có giao tuyến của mặt phẳng (P) và mặt cầu S(O; r) là đường tròn tâm O bán kính r. Đường tròn này gọi là đường tròn lớn.
Mặt phẳng đi qua tâm O của mặt cầu được gọi là mặt phẳng kính của mặt cầu đó.
6. Giao của mặt cầu với đường thẳng.Tiếp tuyến của mặt cầu.
Cho mặt cầu S(O; r) và đường thẳng ∆.
Gọi H là hình chiếu vuông góc của tâm O trên ∆ và d = OH là khoảng cách từ O đến ∆.
(1). Nếu d > r thì ∆ không cắt mặt cầu S(O; r), vì với mọi điểm M thuộc ∆ ta đều có OM > r và như vậy mọi điểm M thuộc ∆ đều nằm ngoài mặt cầu.
(2). Nếu d = r thì mọi điểm H thuộc mặt cầu S(O; r). Khi đó, với mọi điểm M thuộc ∆ nhưng khác H ta luôn có: OM > OH = r nên OM > r.
- Như vậy H là điểm chung duy nhất của mặt cầu S(O; r) và đường thẳng ∆. Khi đó, ta nói đường thẳng ∆ tiếp xúc với mặt cầu S(O; r) tại H.
Điểm H gọi là tiếp điểm của ∆ và mặt cầu. Đường thẳng ∆ gọi là tiếp tuyến