IMG-LOGO

Câu hỏi:

21/07/2024 231

Tìm nguyên hàm của hàm số f(x)=1-3x3.

A. f(x)dx=-(1-3x)-23+C

B. f(x)dx=-34(1-3x)1-3x3+C

C. f(x)dx=14(1-3x)1-3x3+C

D. f(x)dx=-14(1-3x)1-3x3+C

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Chọn D

Đặt

t=1-3x3=1-3x1/3dt=13.(-3).(1-3x)-2/3dx      =-(1-3x)-2/3dxdx=-t2dt

Khi đó

 

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số F(x)=7sinx-cosx+1 là một nguyên hàm của hàm số nào sau đây?

Xem đáp án » 04/03/2022 713

Câu 2:

Tìm nguyên hàm của hàm số fx=sin3x.cosx.

Xem đáp án » 02/03/2022 481

Câu 3:

Tìm nguyên hàm của hàm số fx=e4x-2.

Xem đáp án » 02/03/2022 399

Câu 4:

Tìm nguyên hàm của hàm số fx=2x.3-2x.

Xem đáp án » 02/03/2022 342

Câu 5:

Tìm nguyên hàm của hàm số J=x3-1x+1dx

Xem đáp án » 03/03/2022 337

Câu 6:

Tìm nguyên hàm của hàm số fx=sin 2x

Xem đáp án » 02/03/2022 315

Câu 7:

Tìm nguyên hàm của hàm số f(x)=5-3x .

Xem đáp án » 02/03/2022 294

Câu 8:

Biết F(x)=61-x  là một nguyên hàm của hàm số f(x)=a1-x. Khi đó giá trị của a bằng

Xem đáp án » 03/03/2022 292

Câu 9:

Tìm nguyên hàm của hàm số f(x)=13-x  là

Xem đáp án » 02/03/2022 280

Câu 10:

Nguyên hàm của hàm số f(x)=12x-1  là

Xem đáp án » 02/03/2022 264

Câu 11:

Tìm nguyên hàm của hàm số f(x)=cos3x+π6 .

Xem đáp án » 02/03/2022 257

Câu 12:

Tìm nguyên hàm của hàm số fx=1sin2x+π3.

Xem đáp án » 02/03/2022 257

Câu 13:

Tìm hàm số f(x) biết f'(x)=2-x2 và f(2)=73

Xem đáp án » 04/03/2022 254

Câu 14:

Họ nguyên hàm của hàm số fx=ex3+e-x

Xem đáp án » 02/03/2022 250

Câu 15:

Tìm nguyên hàm của hàm số K=x-1x3dx

Xem đáp án » 03/03/2022 246

LÝ THUYẾT

1. Nguyên hàm và tính chất

1.1 Nguyên hàm.

- Định nghĩa

Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng của R. 

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi xK.

Ví dụ.

- Hàm số F(x) = sinx + 6 là một nguyên hàm của hàm số f(x) = cosx trên khoảng (-;+) vì F’(x) = (sinx + 6)’ = cosx với x(-;+).

- Hàm số F(x)=x+ 2x-3 là một nguyên hàm của hàm số f(x)=-5(x-3)2 trên khoảng (-;  3)(3;+)  

F'(x)=(x+ 2x-3)'=-5(x-3)2=f(x) với x(-;  3)(3;+).

 - Định lí 1.

 Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

- Định lí 2.

Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x)+C;CR là họ tất cả các nguyên hàm của f(x) trên K.

Kí hiệu: f(x)𝑑x=F(x)+C .

- Chú ý: Biểu thức f(x)dx chính là vi phân của nguyên hàm F(x) của f(x), vì dF(x) = F’(x)dx = f(x)dx.

Ví dụ.

a) Với x(-;+) ta có: ∫x3𝑑x=x44+C;

b) Với x(-;+) ta có: ∫ex𝑑x=ex+C;

c) Với x(0;+) ta có: 12x𝑑x=x+C.

1.2 Tính chất của nguyên hàm

- Tính chất 1.

∫f'(x)𝑑x=f(x)+C

Ví dụ.

(4x)'𝑑x=∫4x.ln4.dx=  4x+C

- Tính chất 2.

kf(x)𝑑x=k.f(x)𝑑x  (k là hằng số khác 0).

- Tính chất 3.

[f(x)±g(x)]𝑑x=f(x)𝑑x±g(x)𝑑x.

Ví dụ. Tìm nguyên hàm của hàm số f(x)=  3x2+  2sinx trên khoảng (-;+).

Lời giải:

Với x(-;+) ta có:

(3x2+ 2sinx)𝑑x=3x2𝑑x+  2sinxdx=x3+ 2.(-cosx) +C = x3-2cosx +C

1.3 Sự tồn tại nguyên hàm

Định lí:

Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

Ví dụ.

a) Hàm số y=x có nguyên hàm trên khoảng (0;+).

x𝑑x=∫x12𝑑x=23x32+C=23xx+C

b) Hàm số y = 1x có nguyên hàm trên khoảng (-;  0)(0;+)

1x𝑑x=ln|x|+C

1.4 Bảng nguyên hàm của một số hàm số thường gặp

0𝑑x=C

∫axdx=axlna+C(a> 0;a1)

𝑑x=x+C

cosxdx = sinx +C

∫xαdx=1α + 1xα +1+C(α  -1) sinxdx=-cosx+C

1x𝑑x=ln|x|+C

1cos2x𝑑x=tanx+C

∫ex𝑑x=ex+C

1sin2x𝑑x=-cotx+C

 

Ví dụ. Tính:

a) (3x4+x3)𝑑x

b) (5ex- 4x+ 2)𝑑x

Lời giải:

a)

 (3x4+x3)𝑑x=3x4𝑑x+x3𝑑x=  3x4𝑑x+∫x13𝑑x

=  3.x55+34.x43+C=3x55+3xx34+C

 

b) (5ex- 4x+ 2)𝑑x

= 5ex𝑑x-  16.∫ 4x𝑑x=  5.ex-16.4xln4+C

- Chú ý: Từ đây, yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

2. Phương pháp tính nguyên hàm.

2.1  Phương pháp đổi biến số

- Định lí 1.

Nếu f(u)𝑑u=F(u)+C  và u = u(x) là hàm số có đạo hàm liên tục thì:

f(u(x)).u'(x)dx=F(u(x))+C.

Hệ quả: Nếu u = ax + b (a ≠ 0), ta có:

f(ax+b)𝑑x=1aF(ax+b)+C.

Ví dụ. Tính (3x+ 2)3𝑑x.

Lời giải:

Ta có: ∫u3𝑑u=u44+C nên theo hệ quả ta có:

(3x+ 2)3𝑑x=(3x+2)44+C.

Chú ý:

Nếu tính nguyên hàm theo biến mới u (u = u(x)) thì sau khi tính nguyên hàm, ta phải trở lại biến x ban đầu bằng cách thay u bởi u(x).

Ví dụ. Tính sinx.cos2xdx.

Lời giải:

Đặt u = cosx. Suy ra: du = – sinx. dx

Khi đó, nguyên hàm đã cho trở thành:

∫u2.(-du)= -∫u2𝑑u =-u33+C

Thay u = cosx vào kết quả ta được:

sinx.cos2xdx=-cos3x3+C.

2.2 Phương pháp tính nguyên hàm từng phần.

- Định lí 2.

Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì:

u(x).v'(x).dx=u(x).v(x)-u'(x).v(x)dx.

- Chú ý.

Vì u’(x) dx = du; v’(x) dx = dv. Nên đẳng thức trên còn được viết ở dạng:

 

Đó là công thức nguyên hàm từng phần.

Ví dụ. Tính

a) xlnxdx;

b) xsinxdx;

c) (5-x).exdx

Lời giải:

a) xlnxdx

Đặt {u=lnxdv=xdx{du=1xdxv=x22

Ta có:

 xlnxdx=x22.lnx-x22.1xdx

=x22.lnx-12x𝑑x=x22.lnx-12.x22+C

=x22.lnx-x24+C.

b) xsinxdx;

Đặt {u=xdv=sinxdx{du=dxv=-cosx

Khi đó:

xsinxdx=-x.cosx +cosxdx= -x.cosx +sinx + C

c) (5-x).exdx

Đặt {u=5-xdv=exdx{du= -dxv=ex

Khi đó:

(5-x).exdx=(5-x).ex--exdx

=(5-x).ex+∫ex𝑑x

=(5-x).ex+ex+C.

3. Khái niệm tích phân

3.1 Diện tích hình thang cong

- Cho hàm số y = f(x) liên tục, không đổi dấu trên đoạn [a; b]. Hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được gọi là hình thang cong.

                                      Ôn tập Toán 12 Chương 3 (ảnh 1)

- Ta xét bài toán tìm diện tích hình thang cong bất kì:

Cho hình thang cong giới hạn bởi các đường thẳng x = a;  x = b (a < b); trục hoành và đường cong y = f(x),  trong đó f(x) là hàm số liên tục, không âm trên đoạn [a; b].

Với mỗi x[a;b], kí hiệu S(x) là diện tích của phần hình thang cong đó nằm giữa hai đường thẳng vuông góc với Ox lần lượt tại a và b.

Ôn tập Toán 12 Chương 3 (ảnh 1)

 

Ta chứng minh được S(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Giả sử F(x) cũng là một nguyên hàm của f(x) thì có một hằng số C sao cho S(x) = F(x) +  C.

Vì S(a) = 0 nên F(a) +  C = 0  hay C =    F(a).

Vậy S(x) = F(x) – F(a).

Thay x = b vào đẳng thức trên, ta có diện tích của hình thang cần tìm là:

S(b) = F(b) – F(a).

3.2 Định nghĩa tích phân

Cho f(x) là hàm số liên tục trên đoạn [a; b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b].

Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên đoạn [a; b]) của hàm số f(x), kí hiệu abf(x)𝑑x.

Ta còn dùng kí hiệu F(x)|ab

Câu hỏi mới nhất

Xem thêm »
Xem thêm »