IMG-LOGO

Câu hỏi:

18/07/2024 328

Cho hai mặt phẳng P:ax+by+cz+d=0;Q:a'x+b'y+c'z+d'=0. Điều kiện nào sau đây không phải điều kiện để hai mặt phẳng trùng nhau?

A. n=k.n' và d=k.d'

B. aa'=bb'=cc'=dd'a'b'c'd'0

C. aa'=bb'=cc'=d'd

Đáp án chính xác

D. a=ka';b=kb';c=kc';d=kd'k0 

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;2;-1) và B(-5;4;1). Phương trình mặt phẳng trung trực của đoạn thẳng AB là:

Xem đáp án » 03/03/2022 537

Câu 2:

Trong không gian Oxyz, mặt phẳng (Oyz) có phương trình là:

Xem đáp án » 03/03/2022 521

Câu 3:

Trong không gian Oxyz, phương trình mặt phẳng trung trực của đoạn thẳng AB với A1;3;2 và B2;4;12 là:

Xem đáp án » 03/03/2022 443

Câu 4:

Trong không gian Oxyz, cho mặt phẳng (P): 2x+y-z+3=0. Điểm nào sau đây không thuộc (P)?

Xem đáp án » 03/03/2022 433

Câu 5:

Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3). Mặt phẳng (P) đi qua A và song song với mặt phẳng Q:x+2y+3z+2=0 có phương trình là:

Xem đáp án » 03/03/2022 419

Câu 6:

Trong không gian Oxyz, cho mặt phẳng (P): 2x-y+3z-2=0. Mặt phẳng (P) có một vec tơ pháp tuyến là:

Xem đáp án » 03/03/2022 381

Câu 7:

Trong không gian Oxyz, điểm nào dưới đây nằm trên mặt phẳng P:2xy+z2=0

Xem đáp án » 03/03/2022 374

Câu 8:

Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua điểm M1;2;0 và có vec tơ pháp tuyến n4;0;5 có phương trình là:

Xem đáp án » 03/03/2022 371

Câu 9:

Trong không gian Oxyz, mặt phẳng (Oxy) có phương trình là:

Xem đáp án » 03/03/2022 362

Câu 10:

Cho điểm M(1;2;0) và mặt phẳng (P): x-3y+z=0. Khoảng cách từ M đến (P) là:

Xem đáp án » 03/03/2022 314

Câu 11:

Cho α,β lần lượt là góc giữa hai vec tơ pháp tuyến bất kì và góc giữa hai mặt phẳng (P) và (Q). Chọn nhận định đúng:

Xem đáp án » 03/03/2022 296

Câu 12:

Mặt phẳng (P): ax-by-cz-d = 0 có một VTPT là:

Xem đáp án » 03/03/2022 289

Câu 13:

Nếu a,b là cặp VTCP của (P) thì vec tơ nào sau đây có thể là VTCP của (P)?

Xem đáp án » 03/03/2022 273

Câu 14:

Trong không gian Oxyz, cho hai mặt phẳng P:2xy+3z1=0 và mặt phẳng Q:4x2y+6z1=0. Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 03/03/2022 264

Câu 15:

Trong không gian Oxyz, cho mặt phẳng (P): x-y+3=0. Vec tơ nào sau đây không là vec tơ pháp tuyến của mặt phẳng (P):

Xem đáp án » 03/03/2022 263

LÝ THUYẾT

I. Vecto pháp tuyến của mặt phẳng.

1.  Định nghĩa:

Cho mặt phẳng (α). Nếu vecto n0 và có giá vuông góc với mặt phẳng (α) thì n được gọi là vecto pháp tuyến của (α)

2. Chú ý. Nếu n vecto pháp tuyến của một mặt phẳng thì kn(k0) cũng là vecto pháp tuyến của  mặt phẳng đó. 

3. Tích có hướng của hai vectơ

- Định nghĩa: Trong không gian Oxyz, cho hai vectơ a=(a1;a2;a3). Tích có hướng của hai vectơ a và  (b kí hiệu là [a,b], được xác định bởi

[a,b]=(|a2   a3b2     b3|;|a3a1b3b1|;|a1a2b1b2|)=(a2b3-a3b2;a3b1-a1b3;a1b2-a2b1)

- Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.

Ví dụ 1. Trong không gian Oxyz, cho ba điểm A(2; 1;1); B(-1; 2; 0) và C(0; 1; -2).

Hãy tìm tọa độ của một vecto pháp tuyến của mặt phẳng (ABC).

Lời giải:

Ta có: AB(-3;1;-1);AC(-2; 0;-3)

Một vecto pháp tuyến của mặt phẳng (ABC) là :

n=[AB;AC]=(-3;-7;2).

II. Phương trình tổng quát của mặt phẳng

1. Định nghĩa.

- Phương trình có dạng Ax + By + Cz + D = 0 trong đó A; B; C không đồng thời bằng 0 , được gọi là phương trình tổng quát của mặt phẳng.

- Nhận xét.

a) Nếu mặt phẳng (α) có phương trình Ax + By + Cz + D = 0 thì nó có một vecto pháp tuyến là n(A;B;C).

b) Phương trình mặt phẳng đi qua điểm M (x0; y0; z0) và nhận vectơ n(A;B;C)  khác 0 là vecto pháp tuyến là: A(x- x0 ) + B( y – y0) + C(z – z0) = 0.

Ví dụ 1. Mặt phẳng 2x – y + 3z – 10 = 0 có một vecto pháp tuyến là n(2;-1;3).

Ví dụ 2. Lập phương trình tổng quát của mặt phẳng (ABC) với A(0; 1; -2); B(2; 1; 0); C ( -2; 1; 1)

Lời giải:

Ta có: AB( 2;0;2);BC(-4;0;1)

Một vecto pháp tuyến của mặt phẳng (ABC) là n=[AB;BC]=(0;-10;0)

Phương trình tổng quát của mặt phẳng (ABC) là:

0(x – 0) – 10(y – 1) + 0(z + 2) = 0 hay  y – 1 = 0.

2. Các trường hợp riêng

Trong không gian Oxyz, cho mặt phẳng (α) :  Ax + By + Cz + D =  0.

a) Nếu D = 0 thì mặt phẳng (α) đi qua gốc tọa độ O.

 

b)

- Nếu A=0,B0,C0 thì mặt phẳng (α) song song hoặc chứa trục Ox.

- Nếu A0,B=0,C0 thì mặt phẳng (α) song song hoặc chứa trục Oy.

- Nếu A0,B0,C=0 thì mặt phẳng (α) song song hoặc chứa trục Oz.

 

c)

- Nếu  A = B = 0; C0 thì mặt phẳng (α) song song hoặc trùng với (Oxy).

- Nếu A = C = 0; B0 thì mặt phẳng (α) song song hoặc trùng với (Oxz).

- Nếu B = C = 0; A0 thì mặt phẳng (α) song song hoặc trùng với (Oyz).

 

- Nhận xét:

Phương trình mặt phẳng theo đoạn chắn (α ):xa+yb+zc=1. Ở đây (α) cắt các trục tọa độ tại các điểm (a; 0; 0); (0; b; 0); (0; 0; c) với abc0.

Ví dụ 3. Trong không gian Oxyz, cho ba điểm M(2; 0; 0); N(0; 3; 0); P(0; 0; 1). Phương trình đoạn chắn của mp(MNP) là:

x2+y3+z1=1

III. Điều kiện để hai mặt phẳng song song, vuông góc.

Trong không gian Oxyz, cho hai mặt phẳng (α) và (β) có phương trình:

(α): A1x + B1y + C1z + D1 = 0

(β): A2x + B2y + C2z + D2 = 0

Hai mặt phẳng (α); (β) có hai vecto pháp tuyến lần lượt là:

n1(A;1B1;C1);n2(A;2B2;C2)

1. Điều kiện để hai mặt phẳng song song.

(α)//(β){n1=k.n2D1kD2{(A1;B1;C1)=k(A2;B2;C2)D1kD2

(α)(β){n1=k.n2D1=kD2{(A1;B1;C1)=k(A2;B2;C2)D1=kD2

- Chú ý:  Để (α) cắt (β) n1k.n2 (A1;B1;C1)k(A2;B2;C2).

Ví dụ 4. Viết phương trình mặt phẳng (α) đi qua A(2; 1; 2) và song song với mặt phẳng (P): x – y + 2z – 1 = 0.

Lời giải:

Vì mp(α) song song với mặt phẳng (P): x – y + 2z – 1 = 0 nên nα=(1;-1;2)

Mặt phẳng (α) đi qua A(2;1; 2) nên có phương trình:

1( x – 2) – 1(y – 1) + 2( z – 2) = 0 hay x – y + 2z – 5 = 0.

2. Điều kiện để hai mặt phẳng vuông góc.

(α)(β)n1n2A1A2+B1B2+C1C2=0

Ví dụ 5. Viết phương trình mặt phẳng (P) đi qua A(1; 0; 1); B( 2; 1; -1) và vuông góc với mặt phẳng (Q): x – y + 2z – 1 = 0

Lời giải:

Ta có vecto pháp tuyến của mặt phẳng (Q) là: nQ=(1;-1;2)

Và AB(1;1;-2)

nPnQ;nPAB nên nP=[nQ;AB]=(0;4;2)

Phương trình mặt phẳng (P) là:

0(x – 1) + 4(y – 0) + 2(z – 1) = 0 hay 4y – 2z – 2 = 0

IV. Khoảng cách từ một điểm đến một mặt phẳng.

- Định lí: Trong không gian Oxyz, cho điểm M0(x0; y0; z0) và mặt phẳng (α): Ax + By + Cz + D = 0 .

Khi đó khoảng cách từ điểm M0 đến mặt phẳng (α) được tính:

d(M0,(α))=|Ax0+By0+Cz0+D|A2+B2+C2.

Ví dụ 6. Tính khoảng cách từ điểm M(2; 3; 0) và N( 1; 1; 1) đến mặt phẳng (P): 2x – y + 2z + 1 = 0.

Lời giải:

Theo công thức tính khoảng cách từ một điểm đến mặt phẳng ta có:

d(M;(P))=|2.2-3+2.0+1|22+(-1)2+ 22=23

d(N;(P))=|2.1-1+2.1+1|22+(-1)2+ 22=43

Ví dụ 7. Tính khoảng cách giữa hai mặt phẳng song song được cho bởi phương trình: (P): x – 2y +2z + 3 = 0 và (Q): x – 2y + 2z – 7= 0.

Lời giải:

Ta biết khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

Lấy điểm A(-3; 0; 0) thuộc mặt phẳng (P).

Ta có: d((P);(Q))=d(A;(Q))=|-3-2.0+2.0-7|12+(-2)2+ 22=103.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »