Trong không gian với hệ trục Oxyz, cho đường thẳng d đi qua điểm và có vec tơ chỉ phương . Phương trình tham số của đường thẳng d là:
A.
B.
C.
D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, điểm nào sau đây không thuộc đường thẳng ?
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm , có dạng:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và đường thẳng . Mệnh đề nào sau đây là đúng?
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng và . Vị trí tương đối của và là:
Trong không gian Oxyz, cho hai mặt phẳng và . Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng . Trong các đường thẳng sau, đường thẳng nào vuông góc với d?
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
Trong các đường thẳng sau, đường thẳng nào song song với d?
Cho đường thẳng và mặt phẳng . Tọa độ giao điểm của d và (P) là:
Trong không gian Oxyz, cho đường thẳng d: có một vectơ chỉ phương . Tính giá trị của
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm và vuông góc với mặt phẳng . Phương trình tham số của d là:
Trong không gian với hệ tọa độ Oxyz, phương trình tham số của đường thẳng là:
I. Phương trình tham số của đường thẳng
- Định lí:
Trong không gian Oxyz, cho đường thẳng ∆ đi qua điểm M0 (x0 ; y0; z0) và nhận vectơ làm vectơ chỉ phương. Điều kiện cần và đủ để điểm M(x; y; z) nằm trên đường thẳng ∆ là có số thực t thỏa mãn: .
- Định nghĩa:
Phương trình tham số của đường thẳng ∆ đi qua điểm M0 (x0 ; y0; z0) và nhận vectơ làm vectơ chỉ phương là
Trong đó, t là tham số.
- Chú ý:
Nếu a1 ; a2; a3 đều khác 0 thì ta có thể viết phương trình ∆ dưới dạng chính tắc như sau:
.
Ví dụ 1. Viết phương trình tham số của đường thẳng ∆ đi qua A(1; 2;2) và có vecto chỉ phương là
Lời giải:
Phương trình tham số của ∆ là: .
Ví dụ 2. Viết phương trình tham số của đường thẳng AB với A(0;1; 2); B(2; 2; 1).
Lời giải:
Đường thẳng AB nhận làm vecto chỉ phương.
Phương trình tham số của AB là: .
II. Điều kiện để hai đường thẳng song song, cắt nhau và chéo nhau.
1. Điều kiện để hai đường thẳng song song.
Gọi lần lượt là vecto chỉ phương của d và d’.
Lấy điểm M(x0; y0; z0) trên d.
Ta có: d song song với d’ khi và chỉ khi .
Đặc biệt: d trùng với d’ khi và chỉ khi: .
Ví dụ 3. Chứng minh hai đường thẳng sau đây song song với nhau:
Lời giải:
Đường thẳng d có vecto chỉ phương đi qua M(3; 2; 2).
Đường thẳng d’ có vecto chỉ phương là
Ta thấy: .
Do đó, hai đường thẳng trên song song với nhau.
2. Điều kiện để hai đường thẳng cắt nhau.
- Hai đường thẳng d và d’ cắt nhau khi và chỉ khi hệ phương trình ẩn t và t’ sau:
(I)
Có đúng một nghiệm.
- Chú ý: Giả sử hệ (I) có nghiệm (t0 ; t’0), để tìm giao điểm M0 của d và d’ ta có thể thay t0 vào phương trình tham số của d hoặc thay t’0 vào phương trình tham số của d’.
Ví dụ 4. Tìm giao điểm của hai đường thẳng:
Lời giải:
Xét hệ phương trình:
Suy ra, d cắt d’ tại điểm A(4; 1; 3).
3. Điều kiện để hai đường thẳng chéo nhau.
Hai đường thẳng d và d’ chéo nhau khi và chỉ khi không cùng phương và hệ phương trình vô nghiệm.
Ví dụ 5. Xét vị trí tương đối của hai đường thẳng:
Lời giải:
Đường thẳng d có vecto chỉ phương
Đường thẳng d’ có vecto chỉ phương là
Ta thấy, không tồn tại số thực k để nên hai đường thẳng d và d’ cắt nhau hoặc chéo nhau.
Xét hệ phương trình:
(I)
Giải hệ phương trình (1) và (2) ta được: t =2; t’ = -1.
Thay vào (3) ta thấy không thỏa mãn nên hệ phương trình (I) vô nghiệm.
Vậy hai đường thẳng d và d’ chéo nhau.
- Nhận xét:
Trong không gian Oxyz, cho mặt phẳng (P): Ax + By + Cz + D = 0 và đường thẳng d: .
Xét phương trình A(x0 + ta1 ) + B(y0 + ta2 ) + C (z0 + ta3 ) + D = 0 ( t là ẩn ) (1)
- Nếu phương trình (1) vô nghiệm thì d và (P) không có điểm chung.
Vậy d// (P).
- Nếu phương trình (1) có đúng một nghiệm t = t0 thì d cắt (P) tại điểm
M(x0 + t0 a1;y0 + t0 a2; z0 + t0 a3).
- Nếu phương trình (1) có vô số nghiệm thì d thuộc (P).
Ví dụ 6. Xét vị trí tương đối của đường thẳng và mặt phẳng (P): 2x – y – z = 0.
Lời giải:
Lấy điểm M(1+ 2t; -t; -2 + t) thuộc đường thẳng d.
Thay tọa độ điểm M vào phương trình (P) ta được:
2(1+ 2t) – (- t) – (-2+ t) = 0
2 + 4t + t + 2 – t = 0
Suy ra đường thẳng d cắt mặt phẳng (P) tại M( -1; 1; - 3).