Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

19/07/2024 250

Trong các số phức z thỏa mãn z2+1=2z, gọi z1,z2 lần lượt là các số phức có mô đun lớn nhất và nhỏ nhất. Khi đó mô đun lớn nhất của số phức w=z1+z2 là:

A. w=22

Đáp án chính xác

B. w=2

C. w=1+2

D. w=2

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Ta có:

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho số phức z thỏa mãn 3+iz=2+14iz+13i. Chọn khẳng định đúng?

Xem đáp án » 15/03/2022 427

Câu 2:

Cho số phức z thay đổi thỏa mãn zi+z+i=6. Gọi S là đường cong tạo bởi tất cả các điểm biểu diễn số phức zii+1 khi z thay đổi. Tính diện tích hình phẳng giới hạn bởi đường cong S.

Xem đáp án » 15/03/2022 416

Câu 3:

Cho hai số phức z1,z2 thỏa mãn z1+1i=2 và z2=iz1. Tìm GTNN m của biểu thức z1z2?

Xem đáp án » 15/03/2022 414

Câu 4:

Cho hai số phức z1,z2 thỏa mãn z1+1i=2 và z2=iz1. Tìm GTNN của m của biểu thức z1z2?

Xem đáp án » 15/03/2022 353

Câu 5:

Cho zC thỏa mãn 2+iz=17z+13i. Biết tập hợp các điểm biểu diễn cho số phức w=34iz1+2i là đường tròn tâm I, bán kính R. Kết quả nào đúng?

Xem đáp án » 15/03/2022 310

Câu 6:

Cho các số phức z1=2+i,z2=2+i và số phức z thỏa mãn zz12+zz22=16. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của M2m2. Giá trị biểu thức  bằng:

Xem đáp án » 15/03/2022 297

Câu 7:

Cho các số phức z1;z2 thỏa mãn z1=3;z2=4 và chúng được biểu diễn trong mặt phẳng phức lần lượt là các điểm M, N. Biết góc giữa vec tơ OM và ON bằng 60°. Tìm mô đun của số phức z=z1+z2z1z2?

Xem đáp án » 15/03/2022 290

Câu 8:

Cho các số phức z1,z2 với z10. Tập hợp các điểm biểu diễn số phức w=z1zz2 là đường tròn tâm là gốc tọa độ và bán kính bằng 1. Tập hợp các điểm biểu diễn số phức z là:

Xem đáp án » 15/03/2022 290

Câu 9:

Cho z1,z2,z3 là ba số phức thay đổi thỏa mãn z1=2;z3=1;z2=z1z3. Trong mặt phẳng phức A, B biểu diễn z1;z2. Giả sử O, A, B lập thành tam giác có diện tích là a, chu vi là b. Giá trị lớn nhất của biểu thức T=a+b là:

Xem đáp án » 15/03/2022 289

Câu 10:

Cho số phức z thỏa mãn z1i=1, số phức w thỏa mãn w¯23i=2. Tính giá trị nhỏ nhất của zw

Xem đáp án » 15/03/2022 279

Câu 11:

Cho số phức z thỏa mãn z34i=5. Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất biểu thức P=z+22zi2. Mô đun của số phức w=M+mi là:

Xem đáp án » 15/03/2022 267

Câu 12:

Cho số phức z thỏa mãn 2z34i=10. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z. Khi đó  bằng:

Xem đáp án » 15/03/2022 266

Câu 13:

Cho số phức z thay đổi thỏa mãn zi+z+i=6. Gọi S là đường cong tạo bởi tất cả các điểm biểu diễn số phức zii+1 khi z thay đổi. Tính diện tích hình phẳng giới hạn bởi đường cong S.

Xem đáp án » 15/03/2022 264

Câu 14:

Cho số phức z thỏa mãn điều kiện z1i+z+1+3i=65. Giá trị lớn nhất của z23i là:

Xem đáp án » 15/03/2022 227

LÝ THUYẾT

1. Số phức

1.1. Số i.

Số i là số thỏa mãn: i2 = – 1.

1.2. Định nghĩa số phức

Mỗi biểu thức dạng a + bi , trong đó a;bR; i2 = – 1 được gọi là một số phức.

Đối với số phức z = a + bi, ta nói: a là phần thực, b là phần ảo của z.

Tập hợp các số phức kí hiệu là C.

Ví dụ 1. Các số sau là những số phức: 2 – 3i; –8 + 4i; 5-i2;3+2i.

Ví dụ 2.

Số phức 6 – i có phần thực là 6, phần ảo là – 1.

1.3. Số phức bằng nhau

Định nghĩa: Hai số phức bằng nhau nếu phần thực và phần ảo của chúng tương ứng bằng nhau :

a + bi = c + di  a = c và b = d.

Ví dụ 3. Tìm các số thực x và y biết :

(2x – 1) + (y – 2)i = 3 + (4 – y)i

Lời giải :

Ta có : (2x – 1) + (y – 2)i = 3 + (4 – y)i

{2x-1= 3y-2=  4-y{x=2y= 3.

Vậy x = 2 và y = 3.

– Chú ý :

a) Mỗi số thực a được coi là một số phức với phần ảo bằng 0 : a = a + 0i.

Như vậy, mỗi số thực cũng là một số phức. Ta có : RC.

b) Số phức 0 + bi được gọi là số thuần ảo và viết đơn giản là bi : bi = 0 + bi

Đặc biệt: i = 0 + 1.i

Số i được gọi là đơn vị ảo.

Ví dụ 4. Số phức z có phần thực là -12 và phần ảo là 12 là z=-12+12i.

1.4. Biểu diễn hình học số phức

Điểm M(a ; b) trong một hệ tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z = a + bi.

 

Ví dụ 5.

Điểm A biểu diễn số phức 2 – 2i

Điểm B biểu diễn số phức 4.

Điểm C biểu diễn số phức – 2.

Điểm D biểu diễn số phức 2 + 3i.

Điểm E biểu diễn số phức 2.

Điểm F biểu diễn số phức – 3 + 2i.

Điểm G biểu diễn số phức –2 – 3i.

1.5. Môđun của số phức.

Giả sử số phức z = a + bi được biểu diễn bởi điểm M(a ; b) trên mặt phẳng tọa độ.

Độ dài của vecto OM được gọi là môđun của số phức z và kí hiệu là |z|.

Vậy |z|=|OM| hay |a+bi|=|OM|.

Ta thấy : |a+bi|=a2+b2.

Ví dụ 6.

|-2+ 3i|=(-2)2+  32=13|2-4i|=(2)2+(-4)2=18

1.6. Số phức liên hợp

– Định nghĩa : Cho số phức z = a + bi. Ta gọi a – bi là số phức liên hợp của z và kí hiệu là z¯=a-bi.

Ví dụ 7.

Nếu z = –3 + 5i thì z¯=-3-  5i.

Nếu z = –4 + 4i thì z¯=-4-4i.

– Nhận xét :

+ Trên  mặt phẳng tọa độ các điểm biểu diễn z và z¯ đối xứng nhau qua trục Ox.

+ Từ định nghĩa ta có : z¯¯=z;|z¯|=|z|.

2. Cộng, trừ và nhân số phức.

2.1. Phép cộng và phép trừ

– Phép cộng và phép trừ hai số phức được thực hiện theo quy tắc cộng, trừ đa thức.

Tổng quát:

(a + bi) + (c + di) = (a + c) + (b + d).i

(a + bi) – (c + di) = (a – c) + (b – d).i

2.2. Phép nhân

– Phép nhân hai số phức được thực hiện theo quy tắc nhân hai đa thức, rồi thay i2 = – 1 vào kết quả.

– Tổng quát:

(a + bi).(c + di) = ac + adi + bci + bdi2 = ac + adi + bci – bd

Vậy (a + bi). (c + di) = (ac – bd) + (ad + bc).i

Chú ý: Phép cộng và phép nhân số phức có tất cả các tính chất của phép cộng và phép nhân các số thực.

3. Phép chia số phức

3.1. Tổng và tích của hai số phức liên hợp

Cho số phức z = a + bi, ta có:

z+z¯= (a + bi) + (a – bi) = 2a;

z.z¯ = (a + bi). (a – bi) = a2 – (bi)2 = a2 + b2|z|2

+ Tổng của một số phức với số phức liên hợp của nó bằng hai lần phần thực của số phức đó.

+ Tích của một số phức với số phức liên hợp của nó bằng bình phương mô đun của số phức đó.

Vậy tổng và tích của hai số phức liên hợp là một số thực.

3.2. Phép chia hai số phức

Chia số phức c + di cho số phức a + bi khác 0 là tìm số phức z sao cho

 c + di = (a + bi).z. Số phức z được gọi là thương trong phép chia c + di cho a + bi và kí hiệu là: z=c+dia+bi.

Ví dụ 8. Thực hiện phép chia 4 – 6i cho 1 + i.

Lời giải:

Giả sử z=4-6i1+i.

Theo định nghĩa ta có: (1 + i).z = 4 – 6i.

Nhân cả hai vế với số phức liên hợp của 1 + i ta được:

(1 – i) .(1 + i).z = (1 – i).(4 – 6i)

Suy ra: 2z = – 2 – 10i

Do đó, z = –1 – 5i

Vậy 4-6i1+i=-1-5i.

Tổng quát:

Giả sử z=c+dia+bi. Theo định nghĩa phép chia số phức, ta có:

(a + bi).z = c + di

Nhân cả hai vế với số phức liên hợp của a + bi, ta được:

(a – bi)(a + bi).z = (a – bi)(c + di)

Hay (a2 + b2).z = (ac + bd) + (ad – bc).i

Nhân cả hai vế với số thực 1a2+b2 ta được:

z=1a2+b2.[(ac+bd)+(ad-bc)i]

Vậy c+dia+bi=ac+bda2+b2+ad-bca2+b2.i.

– Chú ý. Trong thực hành để tính thương c+dia+bi, ta nhân cả tử và mẫu với số phức liên hợp của a + bi.

Ví dụ 9. Thực hiện phép chia 2 – 4i cho 2 + i.

Lời giải:

2-4i2+i=(2-4i).(  2-i)(2+i)(2-i)=[2.2-(-4).(-1)]+[2.(-1)+(-4).2]i22+ 12=-10i5=-2i

4. Phương trình bậc hai với hệ số thực.

4.1. Căn bậc hai của số thực âm

Tương tự căn bậc hai của một số thực dương, từ i2 = –1, ta nói i là một căn bậc hai của – 1; –i cũng là một căn bậc hai của –1 vì (– i)2 = –1.

Ta đó, ta xác định được căn bậc hai của các số thực âm, chẳng hạn.

Căn bậc hai của –16 là ±4i vì (±4i)2=-16

Căn bậc hai của –5 là ±5i vì (±5i)2=-5

Tổng quát, các căn bậc hai của số thực a âm ±i|a|.

4.2. Phương trình bậc hai với hệ số thực

Cho phương trình bậc hai ax2 + bx + c = 0 với a; b ; cR;a  0.

Xét biệt số ∆ = b2 – 4ac của phương trình. Ta thấy:

·    Khi ∆ = 0, phương trình có một nghiệm thực x=-b2a.

·    Khi ∆ > 0, có hai căn bậc hai thực của ∆ là ±Δ phương trình có hai nghiệm thực phân biệt, được xác định bởi công thức x1;2=-b±Δ 2a.

·    Khi ∆ < 0, ta có hai căn bậc hai thuần ảo của ∆ là ±i|Δ |. Khi đó, phương trình có hai nghiệm phức được xác định bởi công thức x1;2=-b±i|Δ |2a.

– Nhận xét:

Trên tập hợp số phức, mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt).

Tổng quát: Mọi phương trình bậc n (n1):

a0.xn + a1.xn–1 + ….+ an–1.x + an = 0

Trong đó; a0 ; a1;…..; an C;a00 đều có n nghiệm phức (các nghiệm không nhất thiết phân biệt).

Câu hỏi mới nhất

Xem thêm »
Xem thêm »