IMG-LOGO

Câu hỏi:

20/07/2024 323

Tìm số hạng không chứa x trong khai triển (x2+2x)6.

A. 24.C46.

Đáp án chính xác

B. 22.C26.

C. -2.C46

D. 22.C66.

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án cần chọn là: A

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng của số hạng thứ 4 trong khai triển (5a-1)5 và số hạng thứ 5 trong khai triển (2a-3)6 là:

Xem đáp án » 27/03/2022 2,676

Câu 2:

Nếu bốn số hạng đầu của một hàng trong tam giác Pascal được ghi lại là: 1; 16; 120; 560

Khi đó 4 số hạng đầu của hàng kế tiếp là:

Xem đáp án » 27/03/2022 1,575

Câu 3:

Tìm số hạng chứa x7 trog khai triển (x-1x)13.

Xem đáp án » 27/03/2022 468

Câu 4:

Khai triển nhị thức (x+2)n+5(nN) có tất cả 2019 số hạng. Tìm n.

Xem đáp án » 27/03/2022 412

Câu 5:

Tìm hệ số của x12 trong khai triển (2x-x2)10

Xem đáp án » 27/03/2022 392

Câu 6:

Giá trị của biểu thức S=399C099+398.4.A199+397.42.C299+...+3.498.C9899+499.C9999 bằng:

Xem đáp án » 27/03/2022 334

Câu 7:

Trong khai triển (1+3x)20 với số mũ tăng dần, hệ số của số hạng đứng chính giữa là:

Xem đáp án » 27/03/2022 333

Câu 8:

Cho khai triển (x+2y)8. Hỏi khai triển trên có tất cả bao nhiêu số hạng?

Xem đáp án » 27/03/2022 330

Câu 9:

Hệ số của số hạng chứa x5 trong khai triển (x+1)10

Xem đáp án » 27/03/2022 311

Câu 10:

Tìm số hạng không chứa x trong khai triển (xy2-1xy)8.

Xem đáp án » 27/03/2022 283

Câu 11:

Giá trị của biểu thức S=999C099+998C199+997C299+...+9C9899+C9999 bằng:

Xem đáp án » 27/03/2022 277

Câu 12:

Trong khai triển (x-y)11, hệ số của số hạng chứa x8y3 là:

Xem đáp án » 27/03/2022 251

Câu 13:

Trong khai triển (3x2+1x)n hệ số của x3 là: 34C5n giá trị của n là:

Xem đáp án » 27/03/2022 232

Câu 14:

Trong khai triển (a2-1b)7=C07a14+...+C77(-1b)7 số hạng thứ 5 là

Xem đáp án » 27/03/2022 222

LÝ THUYẾT

I. Công thức nhị thức Niu- tơn

Ta có:

(a+ 

- Công thức nhị thức Niu – tơn.

(a​  +  b)n  =  Cn0an  +​  Cn1.an1b+​ ...+​  Cnk.ankbk ​+....+Cnn1abn1+​  Cnnbn

- Hệ quả:

Với a = b = 1 ta có: 2n  =Cn0+​ Cn1+...+​ Cnn

Với a = 1; b = – 1 ta có: 0  =Cn0​ Cn1+...+(1)k.Cnk+...+(1)n​ Cnn

- Chú ý:

Trong biểu thức ở vế phải của công thức (1):

a) Số các hạng tử là n + 1.

b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0=b0=1).

c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

- Ví dụ 1. Khai triển biểu thức: (a – b)^5.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  =  C50a5  +​  C51.a4(b)+Invalid <m:msup> element​  C52.Invalid <m:msup> elementa3 ​+Invalid <m:msup> elementC53Invalid <m:msup> elementa2+​  C54a+C55=  a5  5a4b  +  ​10a3b210a2b3+​  5ab4b5

- Ví dụ 2. Khai triển biểu thức: (3x – 2)^4.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Invalid <m:msup> element  =Invalid <m:msup> elementC40  +Invalid <m:msup> element  C41.(2)Invalid <m:msup> elementInvalid <m:msup> element+​  C42.Invalid <m:msup> element ​+C43Invalid <m:msup> element(3x)+​  C44=  81x4216x3+  ​216x296x+16

II. Tam giác Pa- xcan

Trong công thức nhị thức Niu – tơn ở mục I, cho n = 0; 1; … và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa- xcan.

Bài 3: Nhị thức Niu-tơn (ảnh 1)

- Nhận xét:

Từ công thức Cnk=  Cn1k1  +  Cn1k suy ra cách tính các số ở mỗi dòng dựa vào các số ở dòng trước nó.

Ví dụ 3. C62=C51+C52=5+10=15.