Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

21/07/2024 271

Cho 4 số lập thành cấp số cộng. Tổng của chúng bằng 22. Tổng các bình phương của chúng bằng 166. Tổng các lập phương của chúng bằng :

A. 22

B. 166     

C. 1752

D. 1408

Đáp án chính xác
 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Đáp án là D

Gọi 4 số lập thành cấp số cộng là u1,u2,u3,u4  và công sai là d

Ta có: u2 = u1 + d;  u3= u1 + 2d; u4 = u1 + 3d

Theo giả thiết ta có:
u1+u2+u3+u4=22u12+​ u22+u32+​ u42=​​166  u1+u1+d+u1+2d+u1+3d=22u12+(​ u1+d)2+(u1+2d)2+​ (u1+3d)2=​​1664u1+6d=224u12+12u1d+14d2=1662u1+3d=11​​​​            (1)2u12+6u1d+7d2=83           (2)

Từ (1) suy ra: u1=  113d2 thế vào (2) ta được:

2.  113d22+6.113d2.d+​  7d2=83d=3u1=1d=3u1=10

 

Vậy 4 số đó là 1,4,7,10 hoặc 10,7,4,1

Tổng các lập phương của chúng: 

13+43+73+103=1408

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng.

Tính tổng của ba số viết xen giữa đó ?

Xem đáp án » 27/03/2022 15,447

Câu 2:

Cho cấp số cộng (un) có: u1=0,1;  d=0,1. Số hạng thứ 7 của cấp số cộng này là: 

Xem đáp án » 27/03/2022 9,573

Câu 3:

Cho dãy số (un) có d = –2; S8 = 72. Tính u1 ?

Xem đáp án » 27/03/2022 1,518

Câu 4:

Cho tứ giác ABCD biết 4 góc của tứ giác lập thành một cấp số cộng và góc A nhỏ nhất bằng 30o. Tìm công sai d ? 

Xem đáp án » 27/03/2022 1,031

Câu 5:

Cho hai cấp số cộng (un): 4,7,10,13,16,...và (vn):1,6,11,16,21,...Hỏi trong 100 số hạng đầu tiên của mỗi cấp số cộng , có bao nhiêu số hạng chung?

Xem đáp án » 27/03/2022 979

Câu 6:

Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?

Xem đáp án » 27/03/2022 961

Câu 7:

Cho các dãy số (un) sau :  

1.un=3n+1

2.un=45n

3.un=2n+35

4.un=n+1n

Hỏi có bao nhiêu dãy số là cấp số cộng ?

Xem đáp án » 27/03/2022 638

Câu 8:

Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3, số hạng cuối bằng 24. Tính tổng các số hạng này

Xem đáp án » 27/03/2022 565

Câu 9:

Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng un=2n

Xem đáp án » 27/03/2022 478

Câu 10:

Cho cấp số cộng (un) thỏa mãn u5+3u3u2=213u72u4=34

Tính tổng 15 số hạng đầu của cấp số 

 

Xem đáp án » 27/03/2022 451

Câu 11:

Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng un=2n+3

 

Xem đáp án » 27/03/2022 419

Câu 12:

Cho tam giác ABC biết 3 góc của tam giác lập thành một cấp số cộng và có  góc nhỏ nhất bằng 25o. Tìm 2 góc còn lại?

Xem đáp án » 27/03/2022 411

Câu 13:

Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng un=3n+1

Xem đáp án » 27/03/2022 403

Câu 14:

Cho cấp số cộng (un) thỏa mãn u5+3u3u2=213u72u4=34

Tính số hạng thứ 100 của cấp số 

Xem đáp án » 27/03/2022 394

Câu 15:

Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng un=n2+1

Xem đáp án » 27/03/2022 380

LÝ THUYẾT

I. Định nghĩa.

- Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ sai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.

Số d được gọi là công sai của cấp số cộng.

- Nếu (un) là cấp số cộng với công sai d, ta có công thức truy hồi:

un+1 = un + d với  n  *  (1)

- Đặc biệt, khi d = 0 thì cấp số cộng là một dãy số không đổi (tất cả các số hạng đều bằng nhau).

- Ví dụ 1. Dãy số hữu hạn: 1, 4, 7, 10, 13, 16, 19 là một cấp số cộng với số hạng đầu u1 = 1; công sai d = 3.

II. Số hạng tổng quát

- Định lí: Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un được xác định bởi công thức:

un = u1 + (n – 1)d với n ≥ 2.

- Ví dụ 2. Cho cấp số cộng (un), biết u1 = 1; d =5.

a) Tìm u10.

b) Số 106 là số hạng thứ bao nhiêu?

Lời giải:

a) Số hạng thứ 10 là u10 = u1 + (10 – 1)d = 1 + 9.5 = 46.

b) Ta có: un = u1 + (n – 1)d. Vì un =106 nên:

106 = 1 + (n – 1).5

105 = (n – 1).5

21 = n – 1 nên n = 22.

Vậy 106 là số hạng thứ 22.

III. Tính chất các số hạng của cấp số cộng.

- Định lí 2:

Trong một cấp số cộng, mỗi số hạng (trừ số hạng đầu và số cuối) đều là trung bình cộng của hai số đứng kề với nó, nghĩa là:

uk  =uk1  +uk+12  ;  k2

IV. Tổng n số hạng đầu của một cấp số cộng

- Định lí: Cho cấp số cộng (un). Đặt Sn = u1 + u2 + u3 + … + un.

Khi đó: Sn  =  n(u1+  un)2 .

- Chú ý: vì un = u1 + (n – 1)d nên ta có: Sn  =nu1  ​+​ n(n    1)2d.

Ví dụ 3. Cho cấp số cộng (un) với un = 2n + 5.

a) Tìm u1 và d.

b) Tính tổng 40 số hạng đầu tiên.

c) Biết Sn = 187, tìm n.

Lời giải:

a) Ta có: u1 = 2.1 + 5 = 7; u2 = 2.2 + 5 = 9.

Suy ra, d = u2 – u1 = 2.

b) Tổng 40 số hạng đầu tiên là:

S40  =40.7  ​+​ 40(40    1)2.2  =1840

c) Ta có: Sn  =nu1  ​+​ n(n    1)2d nên:

187  =  7n  +​  n(n1)2.2187  =  7n+​  n  2n

n^2 + 6n – 187 = 0

n=  11n=  17

Vì n là nguyên dương nên n = 11.

Câu hỏi mới nhất

Xem thêm »
Xem thêm »