Giả sử là giá trị thực của tham số m để đường thẳng cắt đồ thị hàm số tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21
Chọn D.
Phương pháp:
Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.
Dựa vào công thức trọng tâm, xác định m.
Cách giải:
Phương trình hoành độ giao điểm của d và (C) là
Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho tứ diện ABCD có AB,AC,AD đôi một góc vuông, AB =4cm, AC =5cm, AD= 3cm. Thể tích khối tứ diện ABCD bằng
Cho hình chóp S.ABC có SA =2a, SB = 3a, SC = 4a và . Tính thể tích V của khối chóp S.ABC
Cho hàm số với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?
Cho f(1)=1, f(m+n)=f(m)+f(n)+mn với mọi mnÎN*. Tính giá trị của biểu thức
Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB=2a, AD=BC=CD=a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A tới mặt phẳng (SBC) bằng , tính theo a thể tích V của khối chóp
Cho khối chóp có thể tích bằng và diện tích đáy bằng . Chiều cao của khối chóp đó là
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ dưới. Xét hàm số . Tìm m để
Cho hình chóp S.ABCD có đáy ABC là tam giác với AB=2 cm, AC=3cm, . Gọi lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm A, B, C,
Cho khối trụ có thể tích bằng , chiều cao 5cm. Tính bán kính R của khối trụ đã cho
Cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng