Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A.
B.
C.
D.
Chọn đáp án D
Phương pháp
Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác.
Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật.
Tính số hình vuông trong các hình chữ nhật đó để tính xác suất 4 đỉnh tạo thành hình chữ nhật mà không phải hình vuông.
Cách giải
Số phần tử của không gian mẫu
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 12 đỉnh.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật.
Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là .
Nhận thấy rằng trong số các hình chữ nhật tạo thành có 24:4=6 hình vuông (vì hình chữ nhật có các cạnh bằng nhau là hình vuông)
Nên số hình chữ nhật mà không phải hình vuông là .
Xác suất cần tìm là
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức
Ông A dự định sử dụng hết kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)
Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
Cho x, y là các số thực thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức P=2x-y
Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ. Đặt , với m là tham số thực. Điều kiện cần và đủ để bất phương trình g(x)≥0 nghiệm đúng với là
Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây
Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng
Biết bất phương trình có tập nghiệm là đoạn [a;b]. Giá trị của a+b bằng
Cho hình chóp S.ABCD đều có AB=2 và . Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a. Gọi S là điểm đối xứng của A qua BH. Thể tích khối đa diện ABC.SFH bằng
Cho đồ thị y=f(x) như hình vẽ sau đây. Biết rằng và . Tính diện tích S của phần hình phẳng được tô đậm
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=4, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 4) thì được thiết diện là một hình lục giác đều có độ dài cạnh là 2x
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình có đúng hai nghiệm thực. Tính tổng các phần tử của S