Cho hình lăng trụ đứng ABC.A'B'C' có , . Gọi M là trung điểm của CC'. Tính khoảng cách giứa hai đường thẳng BM và AB', biết rằng chúng vuông góc với nhau.
A.
B.
C.
D.
Chọn C.
Gọi \(I\) là hình chiếu của A trên BC, ta có:
Mặt khác, theo giả thiết:
Từ (1) và (2) suy ra
Gọi ta có: (vì cùng phụ với góc
Khi đó là trung điểm cạnh cân tại A.
Gọi F là hình chiếu của E trên \(AB',\) ta có EF là đoạn vuông góc chung của AB'và BM
Suy ra
Ta có:
Mặt khác: đồng dạng nên \(\frac{{B'A}}{{B'E}} = \frac{{IA}}{{EF}} \Leftrightarrow EF = \frac{{IAB'E}}{{B'A}} = \frac{{\frac{{a\sqrt 3 }}{6}.\frac{{2a\sqrt 5 }}{5}}}{{\frac{{2a\sqrt 3 }}{3}}} = \frac{{a\sqrt 5 }}{{10}}.\)
Vậy
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Một vật rơi tự do theo phương trình trong đó là gia tốc trọng trường. Vận tốc tức thời tại thời điểm là:
Có bao nhiêu giá trị nguyên thuộc đoạn của m để giá trị lớn nhất của hàm số trên đoạn không lớn hơn 1?
Cho hàm số y=f(x) liên tục trên [-2;4] và có bảng biến thiên như sau:
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=|f(x)| trên đoạn [-2;4]. Tính
Đường cong sau là đồ thị của hàm số nào trong các hàm số đã cho dưới đây?
Cho hàm số y=f(x) có đạo hàm là . Hỏi hàm số f(x) có bao nhiêu điểm cực tiểu?
Cho hàm số . Biết rằng đồ thị hàm số cắt trục Ox tại ba điểm phân biệt có hoành độ là . Hỏi phương trình có bao nhiêu nghiệm phân biệt thuộc đoạn .
Đồ thị hàm số có tiệm cận ngang là đường thẳng nào trong các đường thẳng sau ?
Cho hình lăng trụ có thể tích là V. Gọi M,N,P là trung điểm các cạnh . Mặt phẳng \(\left( {MNP} \right)\) chia khối lăng trụ thành hai phần. Tính thể tích phần chứa đỉnh B theo V.
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Chọn D.
Ta có nên do đó loại đáp án A và C.
Đồ thị hàm số đi qua điểm nên thay vào đáp án B và D ta thấy
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a, SA=a, SA vuông góc với mặt đáy. Thể tích của khối chóp SABCD là