IMG-LOGO

Câu hỏi:

19/07/2024 438

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{\log _{\sqrt {ab} }}\left( {a{\mkern 1mu} \sqrt[3]{b}} \right) = 3.\] Tính \[{\log _{\sqrt {ab} }}\left( {b{\mkern 1mu} \sqrt[3]{a}} \right).\]

A.\[\frac{1}{3}\]

B.\[ - \frac{1}{3}\]

Đáp án chính xác

C.\[3\]

D.\[ - 3\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Sử dụng các công thức: \[{\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y{\mkern 1mu} {\mkern 1mu} \left( {0 < a \ne 1,{\mkern 1mu} {\mkern 1mu} x,y >0} \right)\]</>

\[{\log _{{a^n}}}{b^m} = \frac{m}{n}{\log _a}b{\mkern 1mu} {\mkern 1mu} \left( {0 < a \ne 1,{\mkern 1mu} {\mkern 1mu} b >0} \right)\]</>

Từ giả thiết tính \[{\log _a}b\].

- Biến đổi biểu thức cần tính bằng cách sử dụng các công thức trên, thay \[{\log _a}b\] vừa tính được để tính giá trị biểu thức.

Giải chi tiết:

Theo bài ra ta có:

log√ab(a3√b)=log√ab(3√ab.3√a2)=log√ab3√ab+log√ab3√a2=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37logab(ab3)=logab(ab3.a23)=logabab3+logaba23=log(ab)12(ab)13+1loga23(ab)12=132.logab(ab)+112.32loga(ab)=23+134(1+logab)⇒23+134(1+logab)=3⇒logab=−37

\[{\log _{\sqrt {ab} }}\left( {a\sqrt[3]{b}} \right) = {\log _{\sqrt {ab} }}\left( {\sqrt[3]{{ab}}.\sqrt[3]{{{a^2}}}} \right)\]

\[ = {\log _{\sqrt {ab} }}\sqrt[3]{{ab}} + {\log _{\sqrt {ab} }}\sqrt[3]{{{a^2}}}\]

\[ = {\log _{{{\left( {ab} \right)}^{\frac{1}{2}}}}}{\left( {ab} \right)^{\frac{1}{3}}} + \frac{1}{{{{\log }_{{a^{\frac{2}{3}}}}}{{\left( {ab} \right)}^{\frac{1}{2}}}}}\]

\[ = \frac{1}{3}2.{\log _{ab}}\left( {ab} \right) + \frac{1}{{\frac{1}{2}.\frac{3}{2}{{\log }_a}\left( {ab} \right)}}\]

\[ = \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {1 + {{\log }_a}b} \right)}}\]

\[ \Rightarrow \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {1 + {{\log }_a}b} \right)}} = 3\]

\[ \Rightarrow {\log _a}b = - \frac{3}{7}\]

Khi đó ta có:

\[{\log _{\sqrt {ab} }}\left( {b\sqrt[3]{a}} \right) = {\log _{\sqrt {ab} }}\left( {\sqrt[3]{{ab}}\sqrt[3]{{{b^2}}}} \right)\]

\[ = {\log _{\sqrt {ab} }}\sqrt[3]{{ab}} + {\log _{\sqrt {ab} }}\sqrt[3]{{{b^2}}}\]

\[ = {\log _{{{\left( {ab} \right)}^{\frac{1}{2}}}}}{\left( {ab} \right)^{\frac{1}{3}}} + \frac{1}{{{{\log }_{{b^{\frac{2}{3}}}}}{{\left( {ab} \right)}^{\frac{1}{2}}}}}\]

=13.2.logab(ab)+112.32logb(ab)

\[ = \frac{2}{3} + \frac{1}{{\frac{3}{4}\left( {{{\log }_b}a + 1} \right)}}\]

\[ = \frac{2}{3} + \frac{4}{3}.\frac{1}{{ - \frac{7}{3} + 1}} = - \frac{1}{3}\].

Đáp án B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABC} \right)\] thuộc miền trong tam giác ABC. Tính thể tích hình chóp \[S.ABC\].

Xem đáp án » 16/05/2022 809

Câu 2:

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

Xem đáp án » 16/05/2022 558

Câu 3:

Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \[3x - 2\] và đồ thị hàm số \[y = {x^2}\] quanh quanh trục \[Ox\].

Xem đáp án » 16/05/2022 521

Câu 4:

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\] bằng \[a\sqrt 6 \]. Tính diện tích mặt cầu ngoại tiếp hình chóp \[S.ABC\].

Xem đáp án » 16/05/2022 392

Câu 5:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 16/05/2022 227

Câu 6:

Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]

Xem đáp án » 16/05/2022 224

Câu 7:

Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?

Xem đáp án » 16/05/2022 215

Câu 8:

Phương trình \[{z^4} = 16\] có bao nhiêu nghiệm phức?

Xem đáp án » 16/05/2022 212

Câu 9:

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là:

Xem đáp án » 16/05/2022 190

Câu 10:

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?

Xem đáp án » 16/05/2022 186

Câu 11:

Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].

Xem đáp án » 16/05/2022 184

Câu 12:

Cho hàm số \[y = {x^3} - 3{x^2} + 2\]. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \[A\left( {1;0} \right)\]?

Xem đáp án » 16/05/2022 178

Câu 13:

Cho hàm số \[f\left( x \right)\] liên tục trên \[\left( {0; + \infty } \right)\] và thỏa mãn 2f(x)+xf(1x)=x với mọi \[x >0\]. Tính \[\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \].

Xem đáp án » 16/05/2022 168

Câu 14:

Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ.

Xem đáp án » 16/05/2022 164

Câu 15:

Tính nguyên hàm \[\int {{x^2}{{\left( {2{x^3} - 1} \right)}^2}dx} \].

Xem đáp án » 16/05/2022 162

Câu hỏi mới nhất

Xem thêm »
Xem thêm »