IMG-LOGO

Câu hỏi:

19/07/2024 559

Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.

A. 38

Đáp án chính xác

B. 48

C. 44

D. 24

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

- Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

- Ứng với mõi trường hợp của d, tìm các cặp số \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] tương ứng.

Giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \left( {a;b;c;d \in \left\{ {0;1;2;3;4;5} \right\},{\mkern 1mu} {\mkern 1mu} a \ne b \ne c \ne d} \right)\].

Vì \[\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 15\] nên \[\left\{ {\begin{array}{*{20}{l}}{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 5 \Rightarrow d \in \left\{ {0;5} \right\}}\\{\overline {abcd} {\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3}\end{array}} \right.\].

+ TH1: \[d = 0\], số cần tìm có dạng \[\overline {abc0} \] \[ \Rightarrow a + b + c{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\].

Các bộ ba chữ số chia hết cho 3 là \[\left\{ {1;2;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;3;5} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {2;3;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {3;4;5} \right\}\].

⇒ có \[4.3! = 24\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 24 số thỏa mãn.

TH2: \[d = 5\], số cần tìm có dạng \[\overline {abc5} \] \[ \Rightarrow a + b + c + 5{\mkern 1mu} {\mkern 1mu} \vdots {\mkern 1mu} {\mkern 1mu} 3\] \[ \Rightarrow a + b + c\] chia 3 dư 1.

Các bộ ba chữ số chia 3 dư 1 là \[\left\{ {0;1;3} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {1;2;4} \right\};{\mkern 1mu} {\mkern 1mu} \left\{ {0;3;4} \right\}\].

⇒ có \[2.2.2! + 3! = 14\] cách chọn \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\].

⇒ Có 14 số thỏa mãn.

Vậy có tất cả \[14 + 14 = 38\] số thỏa mãn.

Đáp án A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABC} \right)\] thuộc miền trong tam giác ABC. Tính thể tích hình chóp \[S.ABC\].

Xem đáp án » 16/05/2022 809

Câu 2:

Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \[3x - 2\] và đồ thị hàm số \[y = {x^2}\] quanh quanh trục \[Ox\].

Xem đáp án » 16/05/2022 521

Câu 3:

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{\log _{\sqrt {ab} }}\left( {a{\mkern 1mu} \sqrt[3]{b}} \right) = 3.\] Tính \[{\log _{\sqrt {ab} }}\left( {b{\mkern 1mu} \sqrt[3]{a}} \right).\]

Xem đáp án » 16/05/2022 438

Câu 4:

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\] bằng \[a\sqrt 6 \]. Tính diện tích mặt cầu ngoại tiếp hình chóp \[S.ABC\].

Xem đáp án » 16/05/2022 392

Câu 5:

Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.

Xem đáp án » 16/05/2022 227

Câu 6:

Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]

Xem đáp án » 16/05/2022 224

Câu 7:

Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?

Xem đáp án » 16/05/2022 215

Câu 8:

Phương trình \[{z^4} = 16\] có bao nhiêu nghiệm phức?

Xem đáp án » 16/05/2022 212

Câu 9:

Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là:

Xem đáp án » 16/05/2022 190

Câu 10:

Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?

Xem đáp án » 16/05/2022 186

Câu 11:

Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].

Xem đáp án » 16/05/2022 184

Câu 12:

Cho hàm số \[y = {x^3} - 3{x^2} + 2\]. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \[A\left( {1;0} \right)\]?

Xem đáp án » 16/05/2022 178

Câu 13:

Cho hàm số \[f\left( x \right)\] liên tục trên \[\left( {0; + \infty } \right)\] và thỏa mãn 2f(x)+xf(1x)=x với mọi \[x >0\]. Tính \[\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \].

Xem đáp án » 16/05/2022 168

Câu 14:

Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ.

Xem đáp án » 16/05/2022 164

Câu 15:

Tính nguyên hàm \[\int {{x^2}{{\left( {2{x^3} - 1} \right)}^2}dx} \].

Xem đáp án » 16/05/2022 162

Câu hỏi mới nhất

Xem thêm »
Xem thêm »