Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là:
A.\[3 - \sqrt 5 \]
B.\[{\left( {\sqrt 5 - 1} \right)^2}\]
C.\[\frac{{\sqrt 5 - 1}}{2}\]
D.2
Phương pháp giải:
- Sử dụng phương pháp logarit cơ số 2 cả hai vế của phương trình, sau đó xét hàm đặc trưng.
- Rút a theo b, từ điều kiện của a suy ra điều kiện chặt chẽ hơn của b.
- Biến đổi \[P = {a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\], đặt ẩn phụ \[t = 2ab\], lập BBT tìm miền giá trị của t.
- Sử dụng phương pháp hàm số tìm GTNN của biểu thức P.
Giải chi tiết:
Theo bài ra ta có:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {2^{a + b + 2ab - 3}} = \frac{{1 - ab}}{{a + b}}\]
\[ \Leftrightarrow a + b + 2ab - 2 = {\log _2}\left( {2 - 2ab} \right) - {\log _2}\left( {a + b} \right)\]
\[ \Leftrightarrow {\log _2}\left( {a + b} \right) + a + b = {\log _2}\left( {2 - 2ab} \right) + 2 - 2ab{\mkern 1mu} {\mkern 1mu} \left( * \right)\]
Xét hàm số \[y = {\log _2}t + t{\mkern 1mu} {\mkern 1mu} \left( {t >0} \right)\] ta có \[y' = \frac{1}{{t\ln 2}} + 1 >0{\mkern 1mu} {\mkern 1mu} \forall t >0\], do đó hàm số đồng biến trên \[\left( {0; + \infty } \right)\].
Khi đó \[\left( * \right) \Leftrightarrow a + b = 2 - 2ab \Leftrightarrow a\left( {1 + 2b} \right) = 2 - b \Leftrightarrow a = \frac{{2 - b}}{{1 + 2b}}\].
Vì \[a,{\mkern 1mu} {\mkern 1mu} b >0 \Rightarrow \frac{{2 - b}}{{1 + 2b}} >0 \Leftrightarrow 2 - b >0 \Leftrightarrow b < 2\].
Khi đó ta có \[P = {a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab = {\left( {2 - 2ab} \right)^2} - 2ab\].
Đặt \[t = 2ab = 2\frac{{2 - b}}{{1 + 2b}}.b{\mkern 1mu} {\mkern 1mu} \left( {0 < b < 2} \right)\] ta có \[t = 2.\frac{{2b - {b^2}}}{{1 + 2b}}\]
\[ \Rightarrow t' = 2.\frac{{\left( {2 - 2b} \right)\left( {1 + 2b} \right) - \left( {2b - {b^2}} \right).2}}{{{{\left( {1 + 2b} \right)}^2}}}\]
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = 2.\frac{{2 + 4b - 2b - 4{b^2} - 4b + 2{b^2}}}{{{{\left( {1 + 2b} \right)}^2}}}\]\[ = \frac{{4 - 4b - 4{b^2}}}{{{{\left( {1 + 2b} \right)}^2}}}\]
\[t' = 0 \Leftrightarrow b = \frac{{ - 1 + \sqrt 5 }}{2}\]
BBT:
\[ \Rightarrow t \in \left( {0;3 - \sqrt 5 } \right]\].
Khi đó ta có \[P = {\left( {2 - t} \right)^2} - t = {t^2} - 5t + 4,{\mkern 1mu} {\mkern 1mu} t \in \left( {0;3 - \sqrt 5 } \right]\].
Ta có \[P' = 2t - 5 = 0 \Leftrightarrow t = \frac{5}{2}{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)\], do đó \[{P_{\min }} = P\left( {3 - \sqrt 5 } \right) = 3 - \sqrt 5 \].
Đáp án C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hình chóp \[S.ABC\] có \[AB = 3a,{\mkern 1mu} {\mkern 1mu} BC = 4a,{\mkern 1mu} {\mkern 1mu} CA = 5a\], các mặt bên tạo với đáy góc \[{60^0}\], hình chiếu vuông góc của S lên mặt phẳng \[\left( {ABC} \right)\] thuộc miền trong tam giác ABC. Tính thể tích hình chóp \[S.ABC\].
Có bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau, chia hết cho 15 và mỗi chữ số đều không vượt quá 5.
Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \[3x - 2\] và đồ thị hàm số \[y = {x^2}\] quanh quanh trục \[Ox\].
Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{\log _{\sqrt {ab} }}\left( {a{\mkern 1mu} \sqrt[3]{b}} \right) = 3.\] Tính \[{\log _{\sqrt {ab} }}\left( {b{\mkern 1mu} \sqrt[3]{a}} \right).\]
Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông cân tại B, \[AB = BC = 3a\], góc \[\angle SAB = \angle SCB = {90^0}\]và khoảng cách từ A đến mặt phẳng \[\left( {SBC} \right)\] bằng \[a\sqrt 6 \]. Tính diện tích mặt cầu ngoại tiếp hình chóp \[S.ABC\].
Tìm tất cả các giá trị thực của m để phương trình \[\left| {{x^4} - 2{x^2} - 3} \right| = 2m - 1\] có đúng 6 nghiệm thực phân biệt.
Biết rằng \[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx = a + b\ln 3 + c\ln 2} \] với \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\] là các số hữu tỉ. Tính \[2a + 3b - 4c.\]
Cho hàm số \[y = {x^3} - m{x^2} - {m^2}x + 8.\] Có bao nhiêu giá trị m nguyên để hàm số có điểm cực tiểu nằm hoàn toàn phía bên trên trục hoành?
Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]?
Cho cấp số nhân \[\left( {{u_n}} \right)\] thỏa mãn \[2\left( {{u_3} + {u_4} + {u_5}} \right) = {u_6} + {u_7} + {u_8}\]. Tính \[\frac{{{u_8} + {u_9} + {u_{10}}}}{{{u_2} + {u_3} + {u_4}}}\].
Cho hàm số \[y = {x^3} - 3{x^2} + 2\]. Có bao nhiêu tiếp tuyến với đồ thị hàm số đi qua điểm \[A\left( {1;0} \right)\]?
Cho hàm số \[f\left( x \right)\] liên tục trên \[\left( {0; + \infty } \right)\] và thỏa mãn với mọi \[x >0\]. Tính \[\int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx} \].
Một lớp học có 30 học sinh nam và 10 học sinh nữ. Giáo viên chủ nhiệm cần chọn một ban cán sự lớp gồm 3 học sinh. Tính xác suất để ban cán sự lớp có cả nam và nữ.
Tính nguyên hàm \[\int {{x^2}{{\left( {2{x^3} - 1} \right)}^2}dx} \].