IMG-LOGO

Câu hỏi:

07/07/2024 77

Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}.\) Mệnh đề nào sau đây đúng? 

A.\(a \in \left( {6;7} \right].\)

Đáp án chính xác

B.\(a \in \left( {2;3} \right].\)

C.\(a \in \left( { - 6; - 5} \right].\)

D. \(a \in \left( {8; + \infty } \right).\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Với \(a = 0\) có \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0 \Leftrightarrow {x^2} - x + 2 \ge 0,\forall x \in \mathbb{R}\) suy ra \(a = 0\) thỏa mãn.

Vậy ta chỉ cần tìm các giá trị \(a >0.\)

Đặt \(t = {x^2} - x + 1,\) có \(t \ge \frac{3}{4}.\)

Bất phương trình đưa về tìm \(a >0\) để \(t + 1 + a\ln t \ge 0,\forall t \ge \frac{3}{4}.\)

Đặt \(f\left( t \right) = t + 1 + a\ln t\) có \(f'\left( t \right) = 1 + \frac{a}{t} >0,\forall a >0,t \ge \frac{3}{4}.\)

Bảng biến thiên

Gọi \(a\) là số thực lớn nhất để bất phương trình \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\) nghiệm đúng với mọi \(x \in \mathbb{R}.\) Mệnh đề nào sau đây đúng?  (ảnh 1)

Có \(f\left( t \right) \ge 0,\forall t \ge \frac{3}{4}\) khi và chỉ khi \(\frac{7}{4} + a\ln \frac{3}{4} \ge 0 \Leftrightarrow a \le \frac{{ - 7}}{{4\ln \frac{3}{4}}} \approx 6,08 \Rightarrow a \in \left( {6;7} \right].\)

Đáp án A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng giá trị tất cả các nghiệm của phương trình \({\log _3}x.{\log _9}x.{\log _{27}}x.{\log _{81}}x = \frac{2}{3}\) bằng

Xem đáp án » 16/05/2022 190

Câu 2:

Cho phương trình \(\sin 2x - \cos 2x + \left| {\sin x + \cos x} \right| - \sqrt {2{{\cos }^2}x + m} - m = 0.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình có nghiệm thực? 

Xem đáp án » 16/05/2022 150

Câu 3:

Có bao nhiêu giá trị nguyên âm của \(a\) để đồ thị hàm số \(y = {x^3} + \left( {a + 10} \right){x^2} - x + 1\) cắt trục hoành tại đúng một điểm?

Xem đáp án » 16/05/2022 146

Câu 4:

Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = {x^3} + mx - \frac{1}{{5{x^2}}}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)?\) 

Xem đáp án » 16/05/2022 139

Câu 5:

Cho khối tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\) và thể tích bằng \(\frac{{{a^3}}}{{4\sqrt 3 }}.\) Tính góc giữa cạnh bên và mặt đáy? 

Xem đáp án » 16/05/2022 129

Câu 6:

Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?

Xem đáp án » 16/05/2022 127

Câu 7:

Biết rằng \[a\] là số thực dương để bất phương trình \[{a^x} \ge 9x + 1\] nghiệm đúng với mọi \[x \in \mathbb{R}\]. Mệnh đề nào sau đây đúng?

Xem đáp án » 16/05/2022 124

Câu 8:

Đường cong hình sau là đồ thị của một trong bốn hàm số được cho dưới đây, hỏi đó là hàm số nào?

Đường cong hình sau là đồ thị của một trong bốn hàm số được cho dưới đây, hỏi đó là hàm số nào? (ảnh 1)

Xem đáp án » 16/05/2022 118

Câu 9:

Biết rằng tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \({\left( {2 + \sqrt 3 } \right)^x} + m{\left( {2 - \sqrt 3 } \right)^x} = 1\) có hai nghiệm phân biệt là khoảng \(\left( {a;b} \right).\) Tính \(T = 3a + 8b.\) 

Xem đáp án » 16/05/2022 110

Câu 10:

Một mặt cầu tâm \(O\) nằm trên mặt phẳng đáy của hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh bằng nhau, các đỉnh \(A,B,C\) thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài \(l,\) các giao tuyến của mặt cầu với các mặt bên của hình chóp thỏa mãn? 

Xem đáp án » 16/05/2022 106

Câu 11:

Với \(a,b\) là các số thực dương tùy ý và \(a \ne 1.\) Ta có \({\log _{{a^2}}}b\) bằng 

Xem đáp án » 16/05/2022 105

Câu 12:

Tính diện tích xung quanh \(S\) của hình nón có bán kính đáy \(r = 4\) và chiều cao \(h = 3.\)

Xem đáp án » 16/05/2022 104

Câu 13:

Tìm tập xác định \(D\) của hàm số \(y = \ln \sqrt {{x^2} - 3x + 2} \) 

Xem đáp án » 16/05/2022 101

Câu 14:

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 3\) và công sai \(d = 2.\) Tính \({u_9}.\)

Xem đáp án » 16/05/2022 100

Câu 15:

Tìm tập nghiệm \(S\) của phương trình \({3^{2x + 1}} = \frac{1}{3}.\)

Xem đáp án » 16/05/2022 100

Câu hỏi mới nhất

Xem thêm »
Xem thêm »