Bán kính mặt cầu ngoại tiếp hình lập phương \(ABCDA'B'C'D'\) bằng \(a\). Tính thể tích của khối lập phương \(ABCDA'B'C'D'\)
A. \({a^3}\)
B. \(\frac{{8\sqrt 3 }}{9}{a^3}\)
C. \(\frac{1}{{27}}{a^3}\)
D. \(\frac{8}{{27}}{a^3}\)
Gọi \(x\) là độ dài của hình lập phương \(ABCD.A'B'C'D'.\)
Suy ra bán kính mặt cầu ngoại tiếp hình lập phương là \(r = \frac{{x\sqrt 3 }}{2}.\) Vậy \(\frac{{x\sqrt 3 }}{2} = a \Rightarrow x = \frac{{2a}}{{\sqrt 3 }}.\)
Thể tích khối lập phương \(ABCD.A'B'C'D'\) là \(V = {x^3} = {\left( {\frac{{2a}}{{\sqrt 3 }}} \right)^3} = \frac{{8\sqrt 3 {a^3}}}{9}.\)
Đáp án B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi S là tập giá trị nguyên \(m \in \left[ { - 2020;2020} \right]\) để phương trình \(2{\sin ^2}x + m\sin 2x = 2m\) vô nghiệm.Tính tổng các phần tử của S
Cho hình chóp đều \(S.ABCD\) cạnh đáy bằng \(a\), \(d\left( {S,\left( {ABCD} \right)} \right) = \frac{{a\sqrt 3 }}{2}\) . Góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Cho một hình nón đỉnh \[S\] có độ dài đường sinh bằng \[{\rm{10cm}}\], bán kính đáy bằng \[6\,{\rm{cm}}\]. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón \[\left( N \right)\] đỉnh \[S\] có chiều cao bằng \[\frac{{16}}{5}\,{\rm{cm}}\]. Tính diện tích xung quay của khối nón \[\left( N \right)\].
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn \((C):{x^2} + {y^2} - 2x - 4y - 11 = 0\). Tìm bán kính của đường tròn \((C')\) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm Otỉ số \(k = - 2020\) và phép tịnh tiến theo véctơ \(\overrightarrow v = (2019;2020)\)là:
Cho 40 thẻ được đánh số từ 1 đến 40, chọn ngẫu nhiên 3 thẻ.Xác suất để tổng các số ghi trên 3 thẻ được chọn là một số chia hết cho 3 bằng
Biết đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) có hai điểm cực trị \(A\), \(B\). Khi đó phương trình đường trung trực của đoạn \(AB\) là
Với \[a\] là số thực dương khác \[1\] tùy ý, \[{\log _{{a^5}}}{a^4}\] bằng
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật với \[AB = 2a\], \[BC = a\sqrt 3 \]. Cạnh bên \[SA\] vuông góc với đáy và đường thẳng \[SC\] tạo với mặt phẳng \[\left( {SAB} \right)\] một góc \[30^\circ \]. Tính thể tích \[V\] của khối chóp \[S.ABCD\] theo \[a\].
Cho tứ diện \(SABC\) có đáy \(ABC\) là tam giác vuông tại \(B\) với \(\;BC = 4a,\,SA = a\sqrt 3 \) , \(SA \bot (ABC)\) và cạnh bên SB tạo với mặt đáy góc \({30^0}.\) Tính thể tích khối cầu ngoại tiếp \(SABC\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Tìm số nghiệm của phương trình .
Một khối nón có đường sinh bằng 2a và diện tích xung quanh của mặt nón bằng . Tính thể tích của khối nón đã cho?
Cho mặt cầu có diện tích bằng \[\frac{{8\pi {a^2}}}{3}\], khi đó bán kính mặt cầu là
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ sau?
Gọi \(l,h,R\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ (T). Diện tích toàn phần Stp của hình trụ (T) là:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi \(AC = 2a;\,BD = 3a\), \(SA = a\), \(SA\) vuông góc với mặt đáy. Thể tích của khối chóp \(S.ABCD\) là