Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(A.\) Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right).\) Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng \(\frac{{\sqrt {17} }}{6}a,\) cạnh bên \(AA'\) bằng \(2a.\) Tính theo \(a\) thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) biết \(AB < a\sqrt 3 .\)
A.\(\frac{{\sqrt {34} }}{6}{a^3}.\)
B.\(\frac{{\sqrt {102} }}{{18}}{a^3}.\)
C.\(\frac{{\sqrt {102} }}{6}{a^3}.\)
D.\(\frac{{\sqrt {34} }}{{18}}{a^3}.\)
Đáp án A.
Gọi \(N\) là trung điểm của \(BC,G\) là trọng tâm tam giác \(ABC\)
Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(\left( {ABC} \right)\) nên \(A'G \bot \left( {ABC} \right)\)
Tam giác \(ABC\) vuông cân tại \(A\) nên \(AN \bot BC\left( 1 \right)\)
Lại có \(A'G \bot BC\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có \(BC \bot \left( {A'AN} \right)\)
Trong mặt phẳng \(\left( {A'AN} \right)\) từ \(N\) kẻ \(NH \bot A'A\) suy ra \(NH\) là ddonanj vuông góc chung của \(AA'\) và \(BC\) do đó \(d\left( {A'A;BC} \right) = NH = \frac{{\sqrt {17} }}{6}a\)
Đặt \(AB = 2x\)
Vì tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = 2x\sqrt 2 ;AN = \frac{1}{2}BC = x\sqrt 2 \)
\(G\) là trọng tâm tam giác \(ABC \Rightarrow AG = \frac{2}{3}AN = \frac{{2x\sqrt 2 }}{3}\)
Trong tam giác vuông \(A'AG\) có \(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9}\)
Trong mặt phẳng \(\left( {A'AN} \right)\) kẻ \(GK//NH \Rightarrow GK = \frac{2}{3}NH = \frac{{a\sqrt {17} }}{9}\)
Trong tam giác vuông \(A'AG\) có
\(\frac{1}{{G{K^2}}} = \frac{1}{{A'{G^2}}} + \frac{1}{{A{G^2}}} \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{1}{{4{a^2} - \frac{{8{x^2}}}{9}}} + \frac{1}{{\frac{{8{x^2}}}{9}}}\)
\( \Leftrightarrow \frac{{81}}{{17{a^2}}} = \frac{{4{a^2}}}{{\left( {4{a^2} - \frac{{8{x^2}}}{9}} \right).\frac{{8{x^2}}}{9}}}\)
\( \Leftrightarrow 64{x^4} - 288{a^2}{x^2} + 68{a^4} = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)
Mà \(AB < a\sqrt 3 \) nên \(AB = a\)
Cách để tính AB
Ta có \(NH.AA' = A'G.AN\) (vì cùng bằng 2 lần diện tích tam giác \[A'NA)\]
\( \Leftrightarrow \frac{{a\sqrt {17} }}{6}.2a = \sqrt {4{a^2} - \frac{{8{x^2}}}{9}} .x\sqrt 2 \)
\( \Leftrightarrow 16{x^4} - 72{a^2}{x^2} + 17{a^4} = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} = \frac{{17}}{4}{a^2} \Rightarrow x = \frac{{\sqrt {17} }}{2}a \Rightarrow AB = a\sqrt {17} \\{x^2} = \frac{1}{4}{a^2} \Rightarrow x = \frac{1}{2}a \Rightarrow AB = a\end{array} \right.\)
Mà \(AB < a\sqrt 3 \) nên \(AB = a.\)
\(A'{G^2} = A'{A^2} - A{G^2} = 4{a^2} - \frac{{8{x^2}}}{9} = \frac{{34{a^2}}}{9} \Rightarrow A'G = \frac{{a\sqrt {34} }}{3}\)
Thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\) là
\(V = A'G.{S_{ABC}} = \frac{{a\sqrt {34} }}{3}.\frac{1}{2}.a.a = \frac{{\sqrt {34} {a^3}}}{6}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Xét các số thực dương \(a\) và \(b\) thỏa mãn \({\log _5}\left( {{5^a}{{.25}^b}} \right) = {5^{{{\log }_5}a + {{\log }_5}b + 1}}.\) Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{{\sin }^2}x} \right) = m\) có nghiệm.
Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 8{x^2} + \left( {{m^2} + 5} \right)x - 2{m^2} + 14\) có hai điểm cực trị nằm về hai phía trục \(Ox?\)
Cho hai số thực \(x,y\) thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2.\) Gọi \(M,m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Cho khối chóp có thể tích \(V = 36\left( {c{m^3}} \right)\) và diện tích mặt đáy \(B = 6\left( {c{m^2}} \right).\) Chiều cao của khối chóp là
Trong khai triển \({\left( {1 - x} \right)^{11}},\) hệ số của số hạng chứa \({x^3}\) là
Cho tứ diện \(O.ABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3a,OB = OC = 2a.\) Thể tích \(V\) khối tứ diện đó là
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau. Mệnh đề nào dưới đây là đúng
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Biết rằng hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right) - \left( {\frac{{{x^4}}}{2} - 2{x^3} + {x^2} + 2x + 1} \right)\) là