Cho hình tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc \(AB = 6a,AC = 8a,AD = 12a,\) với \(a >0,a \in \mathbb{R}.\) Gọi \(E,F\) tương ứng là trung điểm của hai cạnh \(BC,BD.\) Tính khoảng cách \(d\) từ điểm \(B\) đến mặt phẳng \(\left( {AEF} \right)\) theo \(a.\)
A.\(d = \frac{{24\sqrt {29} a}}{{29}}.\)
B. \(d = \frac{{8\sqrt {29} a}}{{29}}.\)
C.\(d = \frac{{6\sqrt {29} a}}{{29}}.\)
D. \(d = \frac{{12\sqrt {29} a}}{{29}}.\)
Đáp ánA.
Cách 1:
Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\)
Gọi \(K\) là trung điểm của \(AB,\) vì \(F\) là trung điểm của \(BD\) suy ra \(FK//AD\) mà \(AD \bot \left( {ABC} \right) \Rightarrow FK \bot \left( {ABC} \right)\) hay \(FK \bot \left( {AKE} \right).\)
Kẻ \(\left\{ \begin{array}{l}KG \bot AE\left( {G \in AE} \right)\\KH \bot FG\left( {H \in GF} \right)\end{array} \right. \Rightarrow d\left( {K,\left( {AEF} \right)} \right) = KH.\) Mặt khác \(BK\) cắt mặt phẳng \(\left( {AEF} \right)\) tại \(A.\)
Suy ra \(\frac{{d\left( {B,\left( {AEF} \right)} \right)}}{{d\left( {K,\left( {AEF} \right)} \right)}} = \frac{{BA}}{{KA}} = 2 \Rightarrow d\left( {B,\left( {AEF} \right)} \right) = 2d\left( {K,\left( {AEF} \right)} \right).\)
Trong tam giác \(AKE\) vuông tại \(K\) và tam giác \(FKG\) vuông tại \(K,\) ta có:
\(\frac{1}{{K{H^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{G^2}}} = \frac{1}{{K{F^2}}} + \frac{1}{{K{A^2}}} + \frac{1}{{K{E^2}}} = \frac{1}{{{{\left( {6a} \right)}^2}}} + \frac{1}{{{{\left( {3a} \right)}^2}}} + \frac{1}{{{{\left( {4a} \right)}^2}}} = \frac{{29}}{{144{a^2}}} \Rightarrow KH = \frac{{12\sqrt {29} a}}{{29}}.\)
Vậy \(d = \frac{{24\sqrt {29} a}}{{29}}.\)
Cách 2: Ta có \(AB,AC,AD\) đôi một vuông góc nên \(AD \bot \left( {ABC} \right).\) Chọn hệ trục tọa độ \(Axyz\) như hình vẽ, chọn \(a = 1,\) ta có \(A\left( {0;0;0} \right),B\left( {0;6;0} \right),E\left( {4;3;0} \right),F\left( {0;3;6} \right).\)
Ta có \(\overrightarrow {AE} = \left( {4;3;0} \right),\overrightarrow {AF} = \left( {0;3;6} \right) \Rightarrow \left[ {\overrightarrow {AE} ,\overrightarrow {AF} } \right] = \left( {18; - 24;12} \right) = 6\left( {3; - 4;2} \right).\)
Mặt phẳng \(\left( {AEF} \right)\) nhận \(\overrightarrow n = \left( {3; - 4;2} \right)\) làm một vectơ pháp tuyến và đi qua \(A\left( {0;0;0} \right)\) có phương trình là: \(3x - 4y + 2z = 0.\)
Vậy \(d\left( {B,\left( {AEF} \right)} \right) = \frac{{\left| {3.0 - 4.6 + 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {2^2}} }} = \frac{{24\sqrt {29} }}{{29}}.\)
Vì \(a = 1\) nên \(d = \frac{{24\sqrt {29} a}}{{29}}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Xét các số thực dương \(a\) và \(b\) thỏa mãn \({\log _5}\left( {{5^a}{{.25}^b}} \right) = {5^{{{\log }_5}a + {{\log }_5}b + 1}}.\) Mệnh đề nào dưới đây đúng?
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{{\sin }^2}x} \right) = m\) có nghiệm.
Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 8{x^2} + \left( {{m^2} + 5} \right)x - 2{m^2} + 14\) có hai điểm cực trị nằm về hai phía trục \(Ox?\)
Cho hai số thực \(x,y\) thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2.\) Gọi \(M,m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Cho khối chóp có thể tích \(V = 36\left( {c{m^3}} \right)\) và diện tích mặt đáy \(B = 6\left( {c{m^2}} \right).\) Chiều cao của khối chóp là
Trong khai triển \({\left( {1 - x} \right)^{11}},\) hệ số của số hạng chứa \({x^3}\) là
Cho tứ diện \(O.ABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3a,OB = OC = 2a.\) Thể tích \(V\) khối tứ diện đó là
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là hàm số \(f'\left( x \right).\) Biết đồ thị hàm số \(f'\left( x \right)\) được cho như hình vẽ. Hàm số \(f\left( x \right)\) nghịch biến trên khoảng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau. Mệnh đề nào dưới đây là đúng
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Biết rằng hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right) - \left( {\frac{{{x^4}}}{2} - 2{x^3} + {x^2} + 2x + 1} \right)\) là