IMG-LOGO

Câu hỏi:

07/07/2024 74

Cho các số thực \(x,y\) thỏa mãn \(x - 3\sqrt {x + 1} = 3\sqrt {y + 2} - y.\) Giá trị nhỏ nhất của biểu thức \(P = x + y\) là 

A. \(\min P = - 63.\)

B.\(\min P = - 91.\)

C. \(\min P = 9 + 3\sqrt {15} .\)

D. \(\min P = \frac{{9 + 3\sqrt {21} }}{2}.\)

Đáp án chính xác
 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án D.

Theo giả thiết: \(x - 3\sqrt {x + 1} = 3\sqrt {y + 2} - y\left( * \right).\)

Điều kiện: \(x \ge - 1,y \ge - 2.\)

Ta có: \(P = x + y \Leftrightarrow y = P - x,\) thế vào \(\left( * \right)\) ta được:

\(3\sqrt {x + 1} + 3\sqrt {P - x + 2} = P{\rm{ }}\left( 1 \right)\)

Ta đi tìm giá trị nhỏ nhất của \(P\) để phương trình \(\left( 1 \right)\) có nghiệm \(x \ge - 1.\)

\(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}P \ge 0\\2\sqrt {\left( {x + 1} \right)\left( {P - x + 2} \right)} = \frac{{{P^2}}}{9} - P - 3\end{array} \right.\)

Để có nghiệm thì \(\frac{{{P^2}}}{9} - P - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{9 + 3\sqrt {21} }}{2}\\P \le \frac{{9 - 3\sqrt {21} }}{2}\end{array} \right. \Rightarrow P \ge \frac{{9 + 3\sqrt {21} }}{2}.\)

Với giá trị nhỏ nhất \(P = \frac{{9 + 3\sqrt {21} }}{2}\) thì phương trình \(\left( 1 \right)\) có nghiệm \(x = - 1,\) suy ra:

\( \Rightarrow y = P - x = \frac{{9 + 3\sqrt {21} }}{2} + 1 = \frac{{11 + 3\sqrt {21} }}{2}.\)

Mặt khác, ta lại có:\(P = x + y \Leftrightarrow x = P - y,\) thế vào (*) ta được:

\(P = 3\sqrt {P - y + 1} + 3\sqrt {y + 2} \) \(\left( 2 \right)\)

Ta đi tìm giá trị nhỏ nhất của \(P\) để phương trình \(\left( 2 \right)\) có nghiệm \(y \ge - 2.\)

\(\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}P \ge 0\\2\sqrt {\left( {y + 2} \right)\left( {P - y + 1} \right)} = \frac{{{P^2}}}{9} - P - 3\end{array} \right.\)

Để có nghiệm thì \(\frac{{{P^2}}}{9} - P - 3 \ge 0 \Leftrightarrow \left[ \begin{array}{l}P \ge \frac{{9 + 3\sqrt {21} }}{2}\\P \le \frac{{9 - 3\sqrt {21} }}{2}\end{array} \right. \Rightarrow P \ge \frac{{9 + 3\sqrt {21} }}{2}.\)

Với giá trị nhỏ nhất \(P = \frac{{9 + 3\sqrt {21} }}{2}\) thì phương trình \(\left( 2 \right)\) có nghiệm \(y = - 2,\) suy ra:

\( \Rightarrow x = P - y = \frac{{9 + 3\sqrt {21} }}{2} + 2 = \frac{{13 + 3\sqrt {21} }}{2}.\)

Vậy \({P_{\min }} = \frac{{9 + 3\sqrt {21} }}{2} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 1\\y = \frac{{11 + 3\sqrt {21} }}{2}\end{array} \right.\\\left\{ \begin{array}{l}x = \frac{{13 + 3\sqrt {21} }}{2}\\y = - 2\end{array} \right.\end{array} \right.\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left( {0;20} \right]\) để hàm số \(y = \frac{{x + 2}}{{x + 3m}}\) đồng biến trên khoảng \(\left( { - \infty ; - 6} \right)?\) 

Xem đáp án » 16/05/2022 262

Câu 2:

Đồ thị của hàm số \[y = {x^3} - 3{x^2} - 9x + 1\] có hai điểm cực trị là \(A\) và \(B.\) Điểm nào dưới đây thuộc đường thẳng \(AB?\) 

Xem đáp án » 16/05/2022 196

Câu 3:

Gọi \(S\) là tập hợp các số tự nhiên có 6 chữ số được lập từ tập hợp \(A = \left\{ {0;1;2;...;9} \right\}.\) Chọn ngẫu nhiên một số từ tập \(S.\) Tính xác suất để chọn được số tự nhiên có tích các chữ số là 1400. 

Xem đáp án » 16/05/2022 183

Câu 4:

Gọi \(m\) là tham số thực để giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2x + m - 4} \right|\) trên đoạn \(\left[ { - 2;1} \right]\) đạt giá trị nhỏ nhất. Giá trị của \(m\) là 

Xem đáp án » 16/05/2022 165

Câu 5:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left| {\sin x - \cos x} \right| + 4\sin 2x = m\) có nghiệm thực? 

Xem đáp án » 16/05/2022 160

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau: Biết f(0) = 0, số nghiệm thuộc đoạn [-pi/6;7pi/6] của phương trình (ảnh 1)

Biết \(f\left( 0 \right) = 0,\) số nghiệm thuộc đoạn \(\left[ { - \frac{\pi }{6};\frac{{7\pi }}{3}} \right]\) của phương trình \(f\left( {f\left( {\sqrt 3 \sin x + \cos x} \right)} \right) = 1\) là

Xem đáp án » 16/05/2022 160

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 3} \right)^{2020}}\left( {{\pi ^{2x}} - {\pi ^x} + 2021} \right)\left( {{x^2} - 2x} \right),\forall x \in \mathbb{R}.\) Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số \(y = f\left( {{x^2} - 8x + m} \right)\) có đúng ba điểm cực trị \({x_1},{x_2},{x_3}\) thỏa mãn \(x_1^2 + x_2^2 + x_3^2 = 50.\) Khi đó tổng các phần tử của \(S\) bằng  

Xem đáp án » 16/05/2022 142

Câu 8:

Tiệm cận ngang của đồ thị hàm số \(y = \frac{{3x - 1}}{{1 - x}}\) là 

Xem đáp án » 16/05/2022 141

Câu 9:

Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện trên hai con súc sắc đó bằng 7 là 

Xem đáp án » 16/05/2022 129

Câu 10:

Cho hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - m - 1} \right)x + 1.\) Có bao nhiêu giá trị nguyên của tham số thực \(m\) để hàm số đạt cực trị tại \({x_1},{x_2}\) thỏa mãn \(x_1^2 + 2m{x_2} - 3{m^2} + m - 5 \le 0?\)

Xem đáp án » 16/05/2022 126

Câu 11:

Từ các chữ số 1, 2, 3, 4 lập được bao nhiêu số tự nhiên có 3 chữ số? 

Xem đáp án » 16/05/2022 115

Câu 12:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ sau

Cho hàm số y=f(x) có đồ thị như hình vẽ sau. Tất cả các giá trị của tham số thực m để phương trình f(x)=m có 4 nghiệm phân biệt là (ảnh 1)

Tất cả các giá trị của tham số thực \(m\) để phương trình \(f\left( x \right) = m\) có 4 nghiệm phân biệt là

Xem đáp án » 16/05/2022 115

Câu 13:

Số đỉnh của một khối lăng trụ tam giác là 

Xem đáp án » 16/05/2022 109

Câu 14:

Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 2\) và \({u_2} = 8.\) Công bội của cấp số nhân đã cho bằng

Xem đáp án » 16/05/2022 105

Câu 15:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau: Khẳng định nào sau đây (ảnh 1)

 Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 16/05/2022 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »