IMG-LOGO

Câu hỏi:

07/07/2024 159

Ông A dự định sử dụng hết \(8{\rm{ }}{m^2}\)kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng ( các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (làm tròn đến hàng phần trăm)?

A. \[2.05{\rm{ }}{m^3}\]

Đáp án chính xác

B. \[1.02{\rm{ }}{m^3}\]

C. \[1.45{\rm{ }}{m^3}\]

D. \[0.73{\rm{ }}{m^3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Gọi chiều rộng, chiều cao của bể cá lần lượt là \(x,h\left( {x;h >0} \right).\) Khi đó chiều dài là \(2x.\)

Tổng diện tích các mặt không kể nắp là \(2{x^2} + 4xh + 2xh = 8 \Leftrightarrow h = \frac{{4 - {x^2}}}{{3x}}.\) Vì \(x,h >0\) nên \(x \in \left( {0;2} \right).\)

Thể tích của bể cá là \(V = 2x.x.h = \frac{{8x - 2{x^3}}}{3}.\)

Ta có \(V' = \frac{8}{3} - 2{x^2},\) cho \(V' = 0 \Leftrightarrow \frac{8}{3} - 2{x^2} = 0 \Rightarrow x = \frac{{2\sqrt 3 }}{3}.\)

Bảng biến thiên

Ông A dự định sử dụng hết 8 m^2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (ảnh 1)

Bể các có dung tích lớn nhất bằng \(\frac{{32\sqrt 3 }}{{27}} \approx 2,05.\)

Đáp án A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

Xem đáp án » 16/05/2022 1,881

Câu 2:

Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là

Hàm số f(x) = ax^4 + bx^3 + cx^2 + dx + e có đồ thị như hình dưới đây. Số nghiệm của phương trình f(f(x)) + 1 = 0 là (ảnh 1)

Xem đáp án » 16/05/2022 849

Câu 3:

Đường cong ở hình vẽ dưới đây là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + d}}\) với \(a,b,c,d\) là các số thực .

Mệnh đề nào dưới đây đúng?

Đường cong ở hình vẽ dưới đây là đồ thị của hàm số y=(ax+b)/(cx+d) với a,b,c,d là các số thực. Mệnh đề nào dưới đây đúng? (ảnh 1)

Xem đáp án » 16/05/2022 621

Câu 4:

Có bao nhiêu giá trị nguyên dương của tham số \(m\) không vượt quá 2020 để hàm số \(y = - {x^4} + (m - 5){x^2} + 3m - 1\) có ba điểm cực trị

Xem đáp án » 16/05/2022 345

Câu 5:

Cho hàm số \(f\left( x \right) = a{x^5} + b{x^3} + cx;(a > 0;b > 0)\) thỏa mãn \(f\left( 3 \right) =  - \frac{7}{3};f\left( 9 \right) = 81\). Gọi \[S\] là tập hợp tất cả các giá trị của tham số \[m\] sao cho \[\mathop {\max }\limits_{\left[ { - 1;5} \right]} \left| {g\left( x \right)} \right| + \mathop {\min }\limits_{\left[ { - 1;5} \right]} \left| {g\left( x \right)} \right| = 86\] với \(g\left( x \right) = f\left( {1 - 2x} \right) + 2.f\left( {x + 4} \right) + m\). Tổng của tất cả các phần tử của \[S\] bằng

Xem đáp án » 16/05/2022 231

Câu 6:

Cho hàm số\(y = {x^3} + (m - 1){x^2} - 3mx + 2m + 1\) có đồ thị C(m), biết rằng đồ thị\(({C_m})\) luôn đi qua hai điểm cố định\(A,\,B.\) Có bao nhiêu số nguyên dương \(m\)thuộc đoạn \(\left[ { - 2020;2020} \right]\) để \(({C_m})\) có tiếp tuyến vuông góc với đường thẳng \(AB\)?

Xem đáp án » 16/05/2022 219

Câu 7:

Cho hàm số \[y = \frac{{x + 1}}{{{x^2} - 2x - 3}}\]. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

Xem đáp án » 16/05/2022 170

Câu 8:

Mặt phẳng \[(AB'C')\] chia khối lăng trụ \[ABC.A'B'C'\] thành hai khối đa diện \[AA'B'C'\] và \[ABCC'B'\]có thể tích lần lượt là \[{V_1},\,{V_2}\]. Khẳng định nào sau đây đúng?

Xem đáp án » 16/05/2022 156

Câu 9:

Cho hàm số \(y = f(x)\) có đạo hàm \(f'(x) = (x + 1){(x - 2)^3}{(x - 3)^4}{(x + 5)^5}{\rm{; }}\forall x \in \mathbb{R}\) . Hỏi hàm số \(y = f(x)\) có mấy điểm cực trị?

Xem đáp án » 16/05/2022 142

Câu 10:

Cho đa giác đều có 10 cạnh. Số tam giác có 3 đỉnh là ba đỉnh của đa giác đều đã cho là

Xem đáp án » 16/05/2022 138

Câu 11:

Kết quả \(\mathop {\lim }\limits_{x \to - 1} \frac{{x + 1}}{{2{x^3} + 2}}\) bằng:

Xem đáp án » 16/05/2022 136

Câu 12:

Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\). Mệnh đề đúng là

Xem đáp án » 16/05/2022 122

Câu 13:

Cho lăng trụ đứng \(ABC.A'B'C'\)có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( {AB'C'} \right)\) tạo với mặt phẳng \(\left( {ABC} \right)\)một góc 60^0.Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

Xem đáp án » 16/05/2022 120

Câu 14:

Có bao nhiêu giá trị của tham số \(m\) để hàm số \(y = {x^3} + \frac{1}{2}({m^2} - 1){x^2} + 1 - m\) có điểm cực đại là \(x = - 1\)?

Xem đáp án » 16/05/2022 119

Câu 15:

Cho hàm số \(y = f(x)\) có bảng biến thiên như sau

Cho hàm số y = f(x) có bảng biến thiên như sau Khẳng định nào sau đây đúng? (ảnh 1)

Khẳng định nào sau đây đúng?

Xem đáp án » 16/05/2022 117

Câu hỏi mới nhất

Xem thêm »
Xem thêm »