Một tổ có 9 học sinh nam và 3 học sinh nữ. Chia tổ thành 3 nhóm mỗi nhóm 4 người để làm 3 nhiệm vụ khác nhau. Tính xác suất để khi chia ngẫu nhiên nhóm nào cũng có nữ .
A.
B.
C.
D.
Đáp án A
Không gian mẫu:
Chỉ có 3 nữ và chia mỗi nhóm có đúng 1 nữ và 3 nam.
Nhóm 2 có cách.
Lúc đó còn lại 2 nữ, 6 nam, nhóm thứ 2 có :
cách chọn.
Cuối cùng còn 4 người là một nhóm: có 1 cách.
Theo quy tắc nhân thì có: 252.40.2=10080 cách.
Vậy xác suất cần tìm là: .
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho các hàm số: .
Trong các hàm số trên, có bao nhiêu hàm số chẵn?
Trong mặt phẳng Oxy cho điểm B(-3;6). Tìm toạ độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay
Biết là hai nghiệm của phương trình và với a, b là hai số nguyên dương. Tính a + b.
Cho hàm số y=f(x) có đạo hàm trên R và . Biết f(1)=2.
Khẳng định nào dưới đây có thể xảy ra ?
Biết rằng đồ thi của hàm số nhận trục hoành làm tiệm cận ngang và trục tung làm tiệm cân đứng. Khi đó giá trị của a+b là:
Cho lằng trụ đứng ABC.A'B'C' có cạnh BC=2a, góc giữa hai mặt phẳng (ABC) và (A'BC) bằng . Biết diện tích của tam giác A'BC bằng . Tính thể tích V của khối lăng trụ ABCA'B'C.
Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x=2.
Cho hàm số có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phươngtrình có bốn nghiệm thực phân biệt