Xét các số thực dương x;y thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức P=x+y..
A.
B.
C.
D.
ĐK:
Ta có
Xét hàm số
có nên hàm số đồng biến trên
Kết hợp (*) suy ra
Xét thay vào (**) ta được
Ta tìm giá trị nhỏ nhất của trên (0;1)
Ta có
Giải phương trình
Lại có
và
Hay g'(y) đổi dấu từ âm sang dương tại nên
Chọn đáp án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của tham số m để hàm số có ba điểm cực trị?
Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác với AB=a, AC=2a và . Tính thể tích V của khối lăng trụ đã cho.
Cho hàm sốy=f(x) có đạo hàm f'(x) trên tập số thực và đồ thị của hàm số y=f(x) như hình vẽ. Khi đó, đồ thị của hàm số có
Khi quay một tam giác vuông (kể cả các điểm trong của tam giác vuông đó) quanh đường thẳng chứa một cạnh góc vuông ta được
Cho các số phức z thỏa mãn |z+1|=2. Biết rằng tập hợp các điểm biểu diễn các số phức là một đường tròn. Bán kính r của đường tròn đó là
Cho hình hộp chữ nhật ABCD.A’B’C’D’. Khoảng cách giữa AB và B’C là , khoảng cách giữa BC và AB’ là , khoảng cách giữa AC và BD’ là . Tính thể tích khối hộp ABCD.A’B’C’D’.
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [-2;1] thỏa mãn f(0)=1 và Giá trị lớn nhất của hàm số y=f(x) trên đoạn [-2;1] là
Cho là hai số phức thỏa mãn điều kiện |z-5-3i|=5 đồng thời . Tập hợp các điểm biểu diễn số phức trong mặt phẳng tọa độ Oxy là đường tròn có phương trình
Tính tổng các giá trị nguyên của tham số sao cho bất phương trình nghiệm đúng với mọi .
Số các giá trị nguyên của tham để hàm số đồng biến trên khoảng ?
Cho hàm số y=f(x) có đồ thị như hình vẽ. Với giá trị nào của tham số m thì phương trình |f(x)|=m có năm nghiệm phân biệt thuộc đoạn [0;5]?
Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm
Cho tứ diện ABCD có AB=AC=ADvà . Xác định góc giữa hai đường thẳng AB và CD