Trong không gian Oxyz, cho các điểm , điểm và tam giác OAC vuông tại C; hình chiếu vuông góc của O trên BC là điểm H. Khi đó điểm H luôn thuộc đường tròn cố định có bán kính bằng:
A.
B. 4
C.
D. 2
Ta có:
di động trên mặt cầu đường kính OA.
Mặt khác di động trên mặt cầu đường kính OB.
di động trên đường tròn cố định là giao tuyến của hai mặt cầu trên (mặt cầu đường kính OA và mặt cầu đường kính OB)
Bán kính cần tìm là:
(do tam giác OIM vuông cân tại M)
Chọn D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: là:
Trong không gian Oxyz, cho A(2;0;0); B(0;4;0); C(0,0,6); D(2,4,6). Gọi (P) là mặt phẳng song song với mp (ABC); (P) cách đều D và mặt phẳng (ABC). Phương trình của (P) là:
Giá trị lớn nhất của hàm số trên bằng 5. Tham số m nhận giá trị là:
Hàm số có đạo hàm liên tục trên R và dấu của đạo hàm được cho bởi bảng dưới đây:
Hàm số nghịch biến trên khoảng:
Cho hàm số . Xét hai điểm phân biệt của đồ thị (C) mà tiếp tuyến tại A và B song song. Biết rằng đường thẳng AB đi qua . Phương trình của AB là:
Lăng trụ có chiều cao bằng a, đáy là tam giác vuông cân và có thể tích bằng . Cạnh góc vuông của đáy lăng trụ bằng
Cho a;b;c là ba số thực dương, và thỏa mãn . Số bộ a;b;c thỏa mãn điều kiện đã cho là:
Cho hình hộp có vuông góc với mặt phẳng đáy (ABCD); góc của với (ABCD) bằng . Khoảng cách từ A đến các đường thẳng và bằng 1. Góc của mặt phẳng và mặt phẳng bằng . Thể tích khối hộp đã cho là:
Bất phương trình nghiệm đúng với mọi . Tập tất cả các giá trị của m là: